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1. Introduction

Understanding the structure of the large amount of string theory compactifications, also

known as the landscape, is one of the big challenges for string phenomenology. In order to

make contact with physics at accessible energy scales, it is necessary to explore all feasible

ways to obtain a standard model-like theory, a task that is complicated by the huge amount

of possibilities. A deeper understanding of patterns in the space of solutions could lead

not only to a more refined string model building, but if we are lucky to direct predictions

based on a statistical analysis of correlations in the landscape.

In recent years, a large number of string theory vacua has been found by using a

statistical approach, see e.g. [1] for heterotic orbifolds, [2] for free fermionic models, [3]

for rational conformal field theories and [4 – 11] for intersecting D-branes in orbifold back-

grounds. For the latter examples, CFT techniques have recently been applied to compute

non-perturbative Yukawa couplings and Majorana mass terms, see e.g. [12, 13], which can

in particular lead to non-vanishing results for instantons on rigid cycles. However, to our

knowledge, no fully-fledged intersecting brane model with standard model spectrum on

rigid cycles has been found so far.1

In this article, we focus on properties and correlations of the intersecting D6-brane

models on T 6/Z′
6 found in [11] (for the set-up see also [18 – 20]) with supersymmetric

standard model-like spectra. In contrast to the smooth heterotic E8×E8 compactifications

of, e.g., [21], intersecting D6-brane models in T 6/Z2N backgrounds are built on fractional

but non-rigid branes and do always have some amount of non-chiral matter states, in

particular chiral multiplets in the adjoint representation. We use a combined method of

three-cycle intersection numbers and Chan-Paton matrices to determine the full massless

spectrum needed to compute the one-loop beta function coefficients of the gauge couplings.

Due to the large number of O(1023) supersymmetric RR tadpole solutions, our focus in the

present article is on a statistical evaluation of supersymmetric standard model-like string

spectra, in particular the subset of O(107) models without chiral exotic matter. While the

bigger set of around O(1015) three generation models displays a large variety of abundances

of chiral exotics and “chiral” Higgs candidates, hidden sectors as well as diverse ratios of

gauge couplings, it turns out that these quantities are strongly correlated. Our analysis

is performed for one out of two possible background geometries for which we prove the

1See e.g. [14 – 17] for model searches on T 6/Z2 × Z2 with torsion and rigid cycles.
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equivalence of bulk solutions. Some examples of spectra with exactly three quark-lepton

generations plus vector-like states and a massless B −L symmetry are discussed in detail.

Selection rules for perturbative Yukawa couplings are considered as well as those mass

terms which can arise through parallel displacement of branes.

The methods to analyse the ensemble of solutions to the supersymmetry and RR

tadpole equations for models on a particular orbifold background have been developed in

an earlier publication [11] and are based on the general idea to classify large amounts of

models in the landscape. While this approach has shown to be useful to gain insights

into the structure of the space of solutions, there are some caveats not to be overlooked.

In particular, one has to be very careful which solutions to the equations one wants to

count as individual models and which are just different realisations of the same low energy

theory that might be related by a symmetry. Moreover, by using a statistical approach

there exists the possibility that one finds correlations between properties of the solutions

that are artefacts of the method by which the solutions are generated [22]. We do not

have to worry about the second issue in the case at hand, since we construct all possible

solutions explicitly (although we do not analyse every single solution in full detail) and

thereby can be sure that no unwanted bias is introduced. With respect to the first issue,

we are providing a careful analysis of the geometric set-up, but since not all solutions could

be checked for the complete non-chiral matter content, there remains an uncertainty about

the true value of completely unrelated models.

The paper is organised as follows. In section 2 we review the geometric set-up and

consistency conditions for intersecting D-brane models in the T 6/Z′
6 orientifold background.

In section 3 we determine the complete massless spectrum using a combined approach of

intersection numbers and Chan-Paton matrices with special emphasis on the cases where

branes are parallel along some direction, clarifying in particular the cases with symmetric

and antisymmetric representations. In section 4, tree level gauge couplings and the one-

loop running due to massless string modes are discussed, and in section 5 our constraints

on standard model-like spectra are given. In section 6, the results of the statistical analysis

are presented with some standard model-like examples without chiral exotics discussed in

detail in section 7. Our conclusions are given in section 8, and finally technical details

are collected in appendices A to D, and the existence of trinification spectra is debated in

appendix E.

2. Set-up

The set-up of the T 6/Z′
6 orientifold with fractional D6-branes has been discussed in detail

in [11].2 We briefly review the main features here. The Z′
6 orbifold generator acts as

θ : zk → e2πivkzk with ~v =
1

6
(1, 2,−3) (2.1)

2Our choice of a basis of three-cycles differs from the one in [18 – 20].
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on the complex coordinates zk (k = 1, 2, 3) of a factorised six-torus T 2
1 × T 2

2 × T 2
3 .3 The

geometric part R of the orientifold action ΩR,

R : zk → zk, (2.2)

enforces the SU(3) × SU(3) × SU(2)2 lattice to have one of two possible orientations A or

B per SU(3) and a or b per SU(2)2 lattice with respect to the Re(zk) directions. The a

and b torus are conveniently parameterised by b = 0, 1/2, respectively. The T 6/Z′
6 orbifold

has 24 three-cycles with four, ρi(i = 1 . . . 4), stemming from the underlying torus, eight,

δj , δ̃j(j = 1 . . . 4), associated to the Z2 sub-symmetry and twelve more pertaining to the

Z3 sub-symmetry. The former two kinds (ρi, δj , δ̃j) form a twelve dimensional sub-lattice

from which fractional cycles

Πfrac =
1

2
Πbulk +

1

2
Πex

=
1

2





4
∑

i=1

ãiρi +

4
∑

j=1

(

djδj + ej δ̃j

)





(2.3)

are built with coefficients ãi, dj , ej ∈ Z which are composed of toroidal one-cycle wrapping

numbers (ni,mi) discussed in more detail in appendix D.4

The RR tadpole cancellation conditions can be written in the general form

∑

a

Na
~Xa = ~L (2.4)

with ~L = (L1, L2, 0, 0, 0, 0)
T and the bulk entries X1,X2 listed in table 1 descending from

the toroidal cycles. The contributions from exceptional cycles, X3 . . . X6, are given in

appendix D in equations (D.9) and (D.10).

The supersymmetry condition for the toroidal part of a three-cycle Πfrac can be cast

into the form
~Y · ~F (U) = 0, ~X · ~U > 0, (2.5)

with the bulk coefficients given in table 1 and
(

U1

U2

)

∼
(

1

c1

)

with c1 =

{

2̺ AA,BB
2̺
3 AB,BA

,

(

F1(U)

F2(U)

)

∼
(

1

c2

)

with c2 =

{

3
2̺ AA,BB
1
2̺ AB,BA

,

(2.6)

up to overall normalisation. The complex structure modulus ̺ =
√

3R2/2R1 parameterises

the ratio of radii R1, R2 along the real and imaginary direction on T 2
3 , and the constants

ci are given in dependence of the lattice orientations on T 2
1 × T 2

2 .

The RR tadpole cancellation conditions on exceptional cycles have no contribution

from O6-planes, (L3 . . . L6) = (0 . . . 0), and fractional cycles are supersymmetric if they are

3We are dealing with factorisable tori only, for orientifold models on non-factorisable tori see [23, 24, 17].
4For the sake of brevity we have set (ã1, ã2, ã3, ã4) ≡ (P, Q,U, V ) in the notation of [11].
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lattice
X1

X2

Y1

Y2

L1

L2

AA
2ã1 + ã2

−(ã4 + b ã2)

2ã3 + ã4 + b(2ã1 + ã2)

ã2

8

8 (1 − b)

AB

BA

}

ã1 + ã2

ã3 − ãb + b(ã1 − ã2)

ã3 + ã4 + b(ã1 + ã2)

ã2 − ã1

8

k 8 (1 − b)

BB
ã1 + 2ã2

ã3 + bã4

ã3 + 2ã4 + b(ã1 + 2ã2)

−ã1

24

8 (1 − b)

Table 1: Bulk coefficients of RR tadpole cancellation and supersymmetry conditions. For shortness,

we have set k = 3 for the AB lattice on T 2
1 × T 2

2 and k = 1 for BA. b = 0, 1/2 parameterises the a

and b shape on T 2
3 .

composed of supersymmetric toroidal cycles and only those exceptional cycles which wrap

the four Z2 fixed points on T 2
1 × T 2

3 traversed by the toroidal cycle with three independent

signs of the four potential contributions corresponding to a Z2 eigenvalue and two discrete

Wilson lines on T 2
1 × T 2

3 . More details are given in appendix D and [11].

It turns out that the solutions to the bulk RR tadpole and supersymmetry conditions

are independent of the choice of the T 2
1 lattice as we prove in appendix D.

3. Complete massless spectrum

In this section, we review the computation of the complete massless, i.e. chiral and non-

chiral, open string spectrum in terms of three-cycle intersection numbers and compare

the results with those arising from the computation of Chan-Paton matrices. The latter

method confirms the formulae inferred in [11].

In the present discussion, special emphasis is placed on states living on branes which are

parallel along some two-torus T 2
m of any T 6/Z2N background. The generic formulae listed

in [11] for those cases are found to be correct except for the case in equation (3.7) where

orientifold image branes a and (θka′) are parallel to each other for some k ∈ {0, . . . , N −1}
but orthogonal to the ΩRθ−k and ΩRθ−k+N invariant O6-planes on the two-torus where

the Z2 action is trivial. There is furthermore a so far unobserved sign subtlety in (3.12)

for brane a on top of (θka′) but displaced from the origin on T 2
3 in case of a Wilson line.

For concreteness, the notation is adapted to the T 6/Z′
6 background with ~v =

(1/6, 1/3,−1/2), the Z2 invariant two-torus being T 2
2 , but the line of reasoning is valid

for any other T 6/Z2N orbifold upon suitable permutation of two-tori. The complete mat-

ter spectrum will be needed in order to determine the one-loop running of gauge couplings

in section 4. One should, however, keep in mind that N = 2 supersymmetric sectors

might become massive, for example by a parallel displacement of branes according to

equation (3.3).

For completeness, we also give the closed string spectrum for the T 6/Z′
6 orbifold.

– 5 –



J
H
E
P
0
7
(
2
0
0
8
)
0
5
2

3.1 Closed string spectrum

The untwisted sector contains the supergravity and universal dilaton-axion multiplet.

The numbers nC and nV of non-universal chiral and vector multiplets depends on the

background. For the T 6/Z′
6 orbifold on AA or BA type lattices on T 2

1 × T 2
2 , we

obtained (nC , nV ) = (38 − 6b, 8 + 6b) in [11] and for the AB and BB orientations

(nC , nV ) = (46 − 10b, 10b) where b = 0, 1
2 parameterises the a or b type shape of T 2

3 ,

respectively. Vectors arise always from RR states whereas scalars stem from both NS-NS

and RR states. The closed string spectrum preserves N = 1 supersymmetry with the

fermionic superpartners arising from R-NS and NS-R sectors.

In the Green Schwarz mechanism, an open string U(1) gauge field wrapped around

the three-cycle Π with orientifold image cycle Π′ becomes massive by absorbing one linear

combination of RR scalars dual to the two-form
∫

Π−Π′ C5 where C5 is the ten dimensional

RR 5-form. Due to supersymmetry, at the same time the NS-NS state parameterising a

linear combination of complex structure moduli and pertaining to the same chiral mul-

tiplet is frozen. Since these closed string sector states carry no gauge representation,

the Green Schwarz mechanism in intersecting D-branes on orbifolds does not induce any

Fayet-Iliopoulos term provided the three-cycles wrapped by the branes fulfil the three-cycle

calibration condition with toroidal part given in equation (2.5), for more details see e.g. the

discussion in [25, 26]. This is in contrast to heterotic orbifolds where the anomalous U(1)

factor has a non-vanishing Fayet-Iliopoulos term and a charged scalar forms the transverse

degrees of freedom of the massive vector boson.

3.2 Massless open spectrum from three-cycle intersection numbers

3.2.1 For branes at three non-vanishing angles

In [11], we showed that the intersection number or net chirality χab ≡ Πfrac
a ◦Πfrac

b between

fractional three-cycles Πfrac
a and Πfrac

b and the resulting total amount ϕab of bifundamental

matter in the (Na,Nb) representation can be expressed in terms of a sum of toroidal and

Z2 invariant intersection numbers,

Iab ≡
3
∏

i=1

I
(i)
ab =

3
∏

i=1

(na
im

b
i −ma

i n
b
i),

IZ2
ab ≡

∑

xk
axk

b

(−1)
τ
x1

ax3
a
+τ

x1
b

x3
b δx1

ax1
b
δx3

ax3
b
I
(2)
ab ,

(3.1)

among brane a and all orbifold images (θkb) for k = 0 . . . N − 1 on T 6/Z2N ,

χab ≡ χab
L − χab

R = −
N−1
∑

k=0

Ia(θkb) + IZ2

a(θkb)

2
,

ϕab ≡ χab
L + χab

R =
N−1
∑

k=0

∣

∣

∣

∣

∣

∣

Ia(θkb) + IZ2

a(θkb)

2

∣

∣

∣

∣

∣

∣

,

(3.2)

the formula for the chiral plus non-chiral bifundamental matter states ϕab being valid only

in case of three non-vanishing angles. Here, xi
a labels the Z2 fixed points traversed by the

– 6 –
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Chiral and non-chiral massless matter on T 6/(Z2N × ΩR)

rep. total number ϕ

(Adja) 1 + 1
4

∑N−1
k=1

∣

∣

∣Ia(θka) + IZ2

a(θka)

∣

∣

∣

(Antia)
1
4

∑N−1
k=0

∣

∣

∣Ia(θka′) + IZ2

a(θka′)
+ IΩRθ−k

a + IΩRθ−k+N

a

∣

∣

∣

(Syma)
1
4

∑N−1
k=0

∣

∣

∣
Ia(θka′) + IZ2

a(θka′)
− IΩRθ−k

a − IΩRθ−k+N

a

∣

∣

∣

(Na,Nb)
1
2

∑N−1
k=0

∣

∣

∣Ia(θkb) + IZ2

a(θkb)

∣

∣

∣

(Na,Nb)
1
2

∑N−1
k=0

∣

∣

∣
Ia(θkb′) + IZ2

a(θkb′)

∣

∣

∣

Table 2: Chiral plus non-chiral matter states ϕ in T 6/(Z2N ×ΩR) models for generic non-vanishing

angles. For vanishing angles, the formulae are modified as discussed in sections 3.2.2 to 3.2.4.

toroidal cycle with wrapping number (na
i ,m

a
i ) along T 2

i and τx1
ax3

a
∈ {0, 1} are combinations

of Wilson lines and a Z2 eigenvalue. The complete matter spectrum for this case is given

in table 2.

Supersymmetric brane configurations are also possible with either one or three van-

ishing angles. The net-chirality χab is still computed by means of three-cycle intersection

numbers (3.1), but a zero can either correspond to no massless state or N = 2 supersym-

metric non-chiral matter pairs. If the branes are parallel along the Z2 invariant two-torus

T 2
2 (and also parallel to the relevant O6-planes for b = (θka′)), the number of non-chiral

pairs is simply computed from the intersection numbers on T 2
1 × T 2

3 in a six-dimensional

set-up. In [11], we were only able to list the remaining cases with branes parallel along

T 2
1 or T 2

3 by silently employing the method of Chan-Paton matrices illustrated in detail in

section 3.3. Furthermore, we did not consider before the case with brane a and its orien-

tifold image (θka′) parallel along T 2
2 but orthogonal to the ΩRθ−k and ΩRθ−k+N invariant

O6-planes given below in (3.7). There is also a sign subtlety for branes parallel on, e.g.,

T 2
3 when carrying a Wilson line and displaced from the origin on the same two-torus, see

equation (3.12).

The formulae for branes parallel along some two-torus are modified as follows, with a

detailed discussion of the derivation to follow below in section 3.3:

3.2.2 For branes parallel along all three tori

• The aa sector provides a vector multiplet of U(Na) and one chiral multiplet in the

adjoint representation.

• Branes a1, a2 with identical position, opposite Z2 eigenvalues and no relative Wilson

line, i.e. τ0
a1

= τ0
a2

+1 mod 2 and τ i
a1

= τ i
a2

(i = 1, 3), contribute 2×[(N1
a,N2

a)+c.c.],

or in the special case of orientifold image branes, i.e. a2 = (θka′1) for some k ∈
{0, . . . , N − 1}, the bifundamental representations are replaced by 2× [Antia + c.c.].

– 7 –
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• Branes a and b parallel on T 2
i but either spatially separated, ∆σi

ab 6= 0 (i = 1, 3),5

or with a relative Wilson line, ∆τ i
ab 6= 0 (i = 1, 3), do not contribute to the massless

spectrum due to a shift in the mass formula for a state with given momentum and

winding numbers pi, qi ∈ Z along T 2
i ,

(mass)2 ∼









1

r
(i)
‖





2
(

pi +
∆τ i

2

)2

+

(

r
(i)
⊥
α′

)2
(

qi + ∆σi
)2



 , (3.3)

where r
(i)
‖ is the length of the one-cycle on T 2

i and r
(i)
⊥ the distance of two copies of

the same one-cycle on T 2
i , both in appropriate units, and the relative Wilson lines

and spatial displacements are parameterised by ∆τ i ∈ {0, 1} and ∆σi ∈ {0, 1/2} for

i = 1, 3, whereas ∆τ2 and ∆σ2 can vary continuously.

3.2.3 For branes parallel along the Z2 invariant T 2
2

• The bifundamental states for a and (θkb) parallel on T 2
2 for a given k and at angles on

T 2
1 ×T 2

3 are grouped in N = 2 supersymmetric non-chiral pairs counted by twice the

intersection number on T 2
1 × T 2

3 . The corresponding term for the given k in table 2

is replaced by

ϕab,‖T 2
2 →

∣

∣

∣
I
(1·3)
a(θkb)

+ I
Z2,(1·3)
a(θkb)

∣

∣

∣
,

ϕAdja,‖T 2
2 → 1

2

∣

∣

∣
I
(1·3)
a(θka)

+ I
Z2,(1·3)
a(θka)

∣

∣

∣
,

(3.4)

where the upper index (1·3) indicates that intersection numbers are computed only

on T 2
1 × T 2

3 , e.g. I
(1·3)
ab =

∏

i=1,3(n
a
im

b
i −ma

i n
b
i). This case applies e.g. to the adjoint

representations in a T 6/Z4 background and is found to agree with the (6i,6i+2)

spectra of [27, 28]. The modification for a parallel to some orientifold image brane

(θkb′) is obvious.

• If brane a and its orientifold image (θka′) are parallel to the ΩRθ−k and ΩRθ−k+N

invariant O6-planes on T 2
2 for some k, the corresponding sector stays N = 2 super-

symmetric, and the matter states for the given k are counted by

ϕAntia,‖T 2
2 ‖ΩRθ−k(+N)

ϕSyma,‖T 2
2 ‖ΩRθ−k(+N)

}

→ 1

2

∣

∣

∣I
(1·3)
a(θka′)

+ I
Z2,(1·3)
a(θka′)

±
(

IΩRθ−k ,(1·3)
a + IΩRθ−k+N ,(1·3)

a

)∣

∣

∣ ,

(3.5)

the upper sign being valid for antisymmetric representations and the lower one for

symmetric ones.

• If brane a and its orientifold image (θka′) are parallel among themselves but orthog-

onal to the ΩRθ−k and ΩRθ−k+N invariant O6-planes on T 2
2 for some given k, the

O6-planes break N = 2 down to N = 1 supersymmetry, as can be seen also from

5In slight abuse of notation, displacements from the origin along one-cycles πk are labelled by σk ∈

{0, 1/2}, but ∆σi denotes a relative distance of branes along T 2
i .

– 8 –
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the fact that the net-chirality of symmetric and antisymmetric states is in general

opposite and non-vanishing for the given k,

χAntia,‖T 2
2 ⊥ΩRθ−k(+N)

χSyma,‖T 2
2 ⊥ΩRθ−k(+N)

}

→ ∓1

4

(

IΩRθ−k

a + IΩRθ−k+N

a

)

. (3.6)

There is an equal amount of antisymmetric and symmetric representations (up to

complex conjugation) for the given k,

ϕAntia,‖T 2
2 ⊥ΩRθ−k(+N)

ϕSyma,‖T 2
2 ⊥ΩRθ−k(+N)

}

→ 1

2

∣

∣

∣I
(1·3)
a(θka′)

+ I
Z2,(1·3)
a(θka′)

∣

∣

∣ . (3.7)

This case had not been discussed in [11] and is presented here for the first time.

3.2.4 For branes parallel along T 2
3 where Z2 acts non-trivially

The case with branes parallel along T 2
1 arises by permutation of indices and is not listed

here in detail.

• The sector of branes a and (θkb) parallel to each other on T 2
3 for some k is in general

N = 1 supersymmetric with net-chirality

χab,‖T 2
3 → −1

2
IZ2

a(θkb)
, (3.8)

which turns out to be zero for a non-vanishing relative distance or Wilson line,

(∆σ3
a(θkb),∆τ

3
a(θkb)) 6= (0, 0). (3.9)

The total counting of massless bifundamental states for branes a and (θkb) on top of

each other on T 2
3 is

ϕab,‖T 2
3 →

{

∣

∣

∣
I
(1·2)
a(θkb)

∣

∣

∣
(∆σ3

a(θkb)
,∆τ3

a(θkb)
) = (0, 0)

0 (∆σ3
a(θkb)

,∆τ3
a(θkb)

) 6= (0, 0)
,

ϕAdja,‖T 2
3 → 1

2

∣

∣

∣
I
(1·2)
a(θka)

∣

∣

∣
for k 6= 0.

(3.10)

This formula in particular applies to the counting of adjoint representation in a T 6/Z′
6

background where ϕAdj = 1 +
∏2

i=1 |n2
i + nimi +m2

i |.

• The O6-planes invariant under ΩRθ−k and ΩRθ−k+N are orthogonal to each other

on T 2
3 , and branes a lie on one of these if they are on top of (θka′) for some k. The

sector is N = 1 supersymmetric with net-chirality

χAntia,‖T 2
3

χSyma,‖T 2
3

}

→ −1

4

(

IZ2

a(θka′)
± IΩRθ−x

a

)

with the exponent x =

{

k a ⊥ ΩRθ−k on T 2
3

k +N a ⊥ ΩRθ−k+N on T 2
3

.

(3.11)
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The total number of antisymmetric and symmetric states is counted by

ϕAntia,‖T 2
3

ϕSyma,‖T 2
3

}

→ 1

2

∣

∣

∣I
(1·2)
a(θka′)

± c̃ IΩRθ−y

a

∣

∣

∣

with y =

{

k a ‖ ΩRθ−k on T 2
3

k +N a ‖ ΩRθ−k+N on T 2
3

.

(3.12)

The constant c̃ = e2πiτ3∆σ3
takes into account that for branes which are displaced

from the origin on T 2
3 , the Z2 invariant intersection points are exchanged under the

orientifold projection, and a sign factor arises if the brane carries a discrete Wilson

line on T 2
3 . This permutation of Z2 fixed points only occurs on tilted tori such as the

b type torus on T 2
3 or the SU(3) invariant ones A and B on T 2

1 , but not on the a

type T 2
3 .

The sign factor c̃ had not been observed in [11], but is necessary in section 7 in order

to avoid a mismatch in the chiral and non-chiral counting of antisymmetric states,

|χAntib,‖T 2
1 | ≤ ϕAntib,‖T 2

1 , on stack b defined in tables 14 and 15.

In the following section we verify explicitly the correctness of these formulae (in the

absence of Wilson lines) using Chan-Paton labels. The antisymmetric and symmetric

representations on orientifold invariant D6-branes with SO(2N) or Sp(2N) gauge groups

require a different treatment displayed in appendix C.

3.3 Massless spectrum from Chan-Paton matrices

The γ-matrices associated to the Z2 ≡ θN and ΩRθ−k action on the Chan-Paton matrices

λa(θkb) and λa(θka′) in a T 6/Z2N background can be chosen in agreement with [29], where

bulk D7-branes on T 4/Z2 had been analysed,

γZ2 =

(

1I 0

0 −1I

)

, γΩRθ−k =

(

0 1I

1I 0

)

,

γΩRθ−k+N ≡ γΩRθ−k · γZ2 =

(

0 −1I

1I 0

)

.

(3.13)

The gauge group for a 2Na×2Na matrix λaa derived in [29] is U(Na)×U(Na) for a generic

brane a 6= (θka′) not on top of the O7-planes and U(Na) if a = (θka′) for some k . This

set-up can be viewed as the special case of fractional D7-branes ai (i = 1, 2) and their

orbifold images (θkai) wrapping fractional cycles Πfrac
ai

such that

Πbulk
a = Πfrac

a1
+ Πfrac

a2
and Na = N1

a = N2
a . (3.14)

Allowing for different stack sizes N i
a, N

j
b ≥ 0 for i, j = 1, 2, the Chan-Paton labels decom-

pose as

λa(θkb) ≃
(

(N1
a,N1

b) (N1
a,N2

b)

(N2
a,N1

b) (N2
a,N2

b)

)

,

λa(θka′) ≃
(

(N1
a,N

2
a) Anti1a + Sym1

a

Anti2a + Sym2
a (N2

a,N
1

a)

)

,

(3.15)
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where for the a(θka′) states it was used that the orientifold projection exchanges Z2 eigen-

values τ0
a → τ0

a′ = τ0
a + 1 and acts as complex conjugation on the representations, i.e.

N1
a′ = N2

a and N2
a′ = N1

a.

The line of argument carries directly over to fractional D6-branes and O6-planes in a

T 6/Z2N background with a single Z2 sub-symmetry. The cases with T 6/Z2N × Z2M back-

grounds require a second γZ2 matrix for the other Z2 sub-symmetry and will be discussed

elsewhere [30].

In order to determine the massless spectrum, one further needs to know the invariance

properties of the brane intersections in order to determine which projection condition on

the Chan-Paton label applies, and finally the number of massless states, their chiralities

and the associated eigenvalues (aZ2 , aΩRθ−k , aΩRθ−k+N ) under the orbifold and orientifold

projections with aΩRθ−k+N = aZ2 · aΩRθ−k for consistency.

Let us start by listing the massless multiplets for branes at relative angles π(φ1, φ2, φ3)

which comply with the supersymmetry constraint
∑3

i=1 φi = 0 mod 2:

• On parallel branes with π(φ1, φ2, φ3) = (0, 0, 0) there exist a Z2 even vector and chiral

multiplet plus two further Z2 odd chiral multiplets.

• At intersections of branes a and (θkb) with all φi 6= 0, the a(θkb) sector provides

one bosonic and fermionic degree of freedom. Together with the (θkb)a sector, these

group into a Z2 even chiral multiplet.

• Branes parallel along the Z2 invariant two-torus T 2
2 at angles π(φ, 0,−φ) provide two

Z2 odd multiplets of opposite chirality.

• Branes parallel along a two-torus where Z2 acts non-trivially, i.e. π(φ,−φ, 0) or

π(0, φ,−φ), provide one Z2 even and one Z2 odd multiplet with opposite chiralities.

More details on the NS and R states are given in appendix B, see in particular table 24.

The chirality of the massless multiplets in each sector can in principle directly be

read off from the massless R state in table 24. We will in the following, however, ignore

relative chiralities among different sectors since they are easily recovered from the three-

cycle intersection numbers in equations (3.1), (3.7), (3.8) and (3.11). Opposite chiralities

within a given sector are on the other hand taken into account.

3.3.1 Branes parallel on all tori

The case for parallel branes has been discussed in detail in section 3.2.2. In the absence of

Wilson lines, the representations pertaining to Z2 even states are read off from the diagonal

entries in λa(θkb), those of the Z2 odd states from the off-diagonals in (3.15).

3.3.2 Branes at non-trivial angles

The matter states on branes with non-vanishing intersection numbers on all tori can be

computed wholly from the intersection numbers. We verify here that using the method of

Chan-Paton labels, one recovers the spectrum in table 2. The present computation carries

over to the case with a vanishing angle as discussed below in sections 3.3.3 and 3.3.4.

– 11 –
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For two branes a and (θkb) at non-trivial angles, the intersections can be either Z2

invariant with their abundance counted by xZ2 ≡ |IZ2

a(θkb)
| or form pairs under Z2 which are

counted by

xZ2−pairs ≡
|Ia(θkb)| − |IZ2

a(θkb)
|

2
. (3.16)

At this point, we focus on branes without relative Wilson lines, τ i
a = τ i

b for i = 1, 3, but

include arbitrary Z2 eigenvalues τ0
a , τ

0
b ∈ {0, 1}. We will briefly comment on the case with

relative Wilson lines below. The following representations occur:

• At intersection points which are exchanged by the Z2 symmetry, there is no projection

on the Chan-Paton matrix. Independently of any relative Z2 eigenvalue i, j = 1, 2,

the contribution to the massless spectrum is

xZ2−pairs × (Ni
a,N

j
b). (3.17)

• At Z2 invariant intersections, the projection on the Chan-Paton label leads to

aZ2 = 1 : xZ2 × (Ni
a,N

i
b), or aZ2 = −1 : xZ2 × (Ni

a,N
j
b)i6=j . (3.18)

• Adding up the contributions from Z2 invariant intersection points and pairs which

are exchanged while taking care of relative signs among Ia(θkb) and IZ2

a(θkb)
leads to

|Ia(θkb) + IZ2

a(θkb)
|

2
× (Ni

a,N
j
b) for i, j = 1, 2, (3.19)

which is clearly in agreement with the multiplicity derived from intersection numbers

alone in table 2.

Our derivation of massless matter representations is tailor-made for branes without relative

Wilson lines. However, from the construction and by comparison with the result in table 2,

one sees clearly that a relative Wilson line will provide a flip of the sign aZ2 in the projection

of the Chan-Paton matrix at some of the Z2 invariant intersection points. The counting

of massless bifundamental representations (3.19) remains valid, but xZ2 = |IZ2

a(θkb)
| looses

the geometric interpretation of counting simply Z2 invariant intersection points. Instead,

it counts intersections with relative signs.

For the computation of symmetric and antisymmetric representations the orbits of

intersection numbers have to be divided differently into their invariance properties and

abundances as follows:

• points fixed under both ΩRθ−k and Z2:

yZ2+ΩRθ−k ≡ |IZ2+ΩRθ−k

a |, (3.20)

• orbits of points fixed under Z2 but forming pairs under ΩRθ−k:

yZ2 ≡
|IZ2

a(θka′)
| − |IZ2+ΩRθ−k

a |
2

, (3.21)
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Matter at a(θka′) + (θka′)a intersections on T 6/Z2N

mult. (aZ2 , aΩRθ−k , aΩRθ−k+N ) rep.

y0 (∗, ∗, ∗) Antiia + Symi
a

yZ2 (+, ∗, ∗) −
(−, ∗, ∗) Antiia + Symi

a

yΩRθ−k (∗,+, ∗) Symi
a

(∗,−, ∗) Antiia
yΩRθ−k+N (∗, ∗,+) Antiia

(∗, ∗,−) Symi
a

yZ2+ΩRθ−k (+,±,±) −
(−,+,−) Symi

a

(−,−,+) Antiia

Table 3: Counting of symmetric and antisymmetric representations at a(θka′) + (θka′)a intersec-

tions in a T 6/(Z2N × ΩR) background. A star * denotes no projection condition. Only two signs

are independent, aΩRθ−k+N = aZ2 · aΩRθ−k .

• orbits of points fixed under ΩRθ−k or ΩRθ−k+N but forming pairs under Z2:

yΩRθ−k ≡ |IΩRθ−k

a | − |IZ2+ΩRθ−k

a |
2

and

yΩRθ−k+N ≡ |IΩRθ−k+N

a | − |IZ2+ΩRθ−k

a |
2

,

(3.22)

• orbits of intersection points which are not fixed under Z2, ΩRθ−k or ΩRθ−k+N :

y0 ≡ 1

4

{

|Ia(θka′)| − |IZ2

a(θka′)
| − |IΩRθ−k

a | − |IΩRθ−k+N

a | + 2 |IZ2+ΩRθ−k

a |
}

. (3.23)

The quantity |IZ2+ΩRθ−k

a | can be determined on a case-by-case basis for a given brane

configuration and T 6/Z2N background. As a simple check, one can verify that these orbits

add up to the total number of intersections,

|Ia(θka′)| = 4 y0 + 2 (yZ2 + yΩRθ−k + yΩRθ−k+N ) + yZ2+ΩRθ−k . (3.24)

We do not give the details here since this number does not appear in the final result of

counting chiral and non-chiral matter representations.

Depending on the various signs in the orbifold or orientifold projections, the states are

as given in table 3. The formula in table 2 is recovered by adding all matter states up for

a given choice of (aZ2 , aΩRθ−k , aΩRθ−k+N ).

3.3.3 Branes parallel along the Z2 invariant torus

For branes parallel along T 2
m and at angles on T 2

n × T 2
p with {m,n, p} cyclic permuta-

tions of {1, 2, 3}, a similar counting of orbits of intersection points can be performed

– 13 –
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N = 2 Matter for branes ‖ on T 2
2 and ‖ ΩRθ−k

mult. (aZ2 , aΩRθ−k , aΩRθ−k+N ) rep.

x
(2)
Z2−pairs (∗, ∗, ∗) (Ni

a,N
j
b) + c.c.

x
(2)
Z2

(+, ∗, ∗) (Ni
a,N

i
b) + c.c.

(−, ∗, ∗) (Ni
a,N

j
b)i6=j + c.c.

y
(2)
0 (∗, ∗, ∗) Antiia + Symi

a + c.c.

y
(2)
Z2

(+, ∗, ∗) −
(−, ∗, ∗) Antiia + Symi

a + c.c.

y
(2)

ΩRθ−k (∗,+, ∗) Symi
a + c.c.

(∗,−, ∗) Antiia + c.c.

y
(2)

ΩRθ−k+N (∗, ∗,+) Antiia + c.c.

(∗, ∗,−) Symi
a + c.c.

y
(2)

Z2+ΩRθ−k (+,±,±) −
(−,+,−) Symi

a + c.c.

(−,−,+) Antiia + c.c.

Table 4: N = 2 supersymmetric sectors occurring for branes parallel along the Z2 invariant T 2
2 .

The symmetric and antisymmetric representations only fit into N = 2 multiplets if they are also

parallel to the ΩRθ−k and ΩRθ−k+N invariant O6-planes. For branes orthogonal to these O6-planes

see table 5.

as in section 3.3.2. In the following, we will label these orbits of points on T 2
n × T 2

p

for branes parallel along T 2
m by an upper index (m). The abundance of Z2 invari-

ant intersection points on T 2
1 × T 2

3 for branes parallel along T 2
2 is, e.g., denoted by

x
(2)
Z2

= |IZ2,(1·3)
ab | = |∑xk

axk
b
(−1)

τ
x1

ax3
a
+τ

x1
b

x3
b δx1

ax1
b
δx3

ax3
b
|.6

The two massless multiplets for branes parallel along T 2
2 have the same (negative) Z2

eigenvalue as listed in table 24 with opposite chirality thereby forming an N = 2 hyper

multiplet. This statement remains true for branes a and (θka′) parallel along T 2
2 for some

k and also parallel to the ΩRθ−k and ΩRθ−k+N invariant O6-planes there. In these two

cases, the spectrum is computed simply from intersection numbers on T 2
1 × T 2

3 leading to

the states listed in table 4.

The situation changes if brane a and its orientifold image (θka′) are parallel along T 2
2

for some k, but orthogonal to the ΩRθ−k and ΩRθ−k+N invariant O6-planes. In this case,

the orientifold projection breaks half of the supersymmetry by assigning aΩRθ−k = 1 to

one N = 1 chiral multiplet and aΩRθ−k = −1 to the one with opposite chirality. The

6The geometric interpretation is again strictly only valid for vanishing relative Wilson lines τ i
a = τ i

b

(i = 1, 3) as in the case with three non-trivial angles.
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N = 1 Matter for image branes ‖ on T 2
2 and ⊥ ΩRθ−k

mult. (aZ2 , aΩRθ−k , aΩRθ−k+N ) rep.

y
(2)
0 (∗, ∗, ∗) Antiia + Symi

a + c.c.

y
(2)
Z2

(+, ∗, ∗) −
(−, ∗, ∗) Antiia + Symi

a + c.c.

y
(2)

ΩRθ−k (∗,+, ∗) Anti
i
a + Symi

a

(∗,−, ∗) Antiia + Sym
i
a

y
(2)

ΩRθ−k+N (∗, ∗,+) Antiia + Sym
i
a

(∗, ∗,−) Anti
i
a + Symi

a

y
(2)

Z2+ΩRθ−k (+,±,±) −
(−,+,−) Anti

i
a + Symi

a

(−,−,+) Antiia + Sym
i
a

Table 5: N = 1 supersymmetric sectors occurring for branes a and (θka′) parallel along the Z2

invariant T 2
2 but perpendicular to the ΩRθ−k and ΩRθ−k+N invariant O6-planes.

resulting matter spectrum is listed in table 5. This part of the spectrum has net-chirality

±1
2

(∣

∣

∣I
ΩRθ−k,(1·3)
a

∣

∣

∣−
∣

∣

∣I
ΩRθ−k+N ,(1·3)
a

∣

∣

∣

)

for antisymmetric and symmetric representations with

the sign inside the parenthesis corresponding to the fact that we have identified the mul-

tiplets as being Z2 odd. This result fits nicely with (3.6) since the contribution from T 2
2 is

N
ΩRθ−x,(2)
O6 |IΩRθ−x,(2)

a | = 2 (3.25)

for any lattice and any exponent x.7

3.3.4 Branes parallel along a torus where Z2 acts

The present case applies to branes parallel on T 2
1 or T 2

3 in the T 6/Z′
6 background. For

concreteness, we focus on the latter. As shown in table 24, the two massless multiplets have

opposite chirality and opposite Z2 eigenvalue, and according to the intersection numbers in

section 3.2.4, net-chiralities arise in this sector. In the absence of Wilson lines, the spectrum

is given in table 6, where we assumed that both massless multiplets have the same ΩRθ−k

transformation. If instead the ΩRθ−k+N eigenvalue is identical, the representations for

y
(3)

ΩRθ−k and y
(3)

ΩRθ−k+N have to be exchanged while replacing aΩRθ−k ↔ −aΩRθ−k+N and

7Throughout the article we use the sloppy notation IΩRθ−x

a instead of NΩRθ−x

O6 IΩRθ−x

a since for a Z3

or Z6 invariant two-torus T 2
m, the number of ΩRθ−x invariant planes is N

ΩRθ−x,(m)
O6 = 1. However, on

a Z2 invariant torus such as T 2
3 for T 6/Z

′

6 we have N
ΩRθ−x,(m)
O6 = 2 (1 − b), and for a Z4 invariant T 2

m,

N
ΩRθ−x,(m)
O6 = 1 for x = 1, 3 on the A type lattice and N

ΩRθ−x,(m)
O6 = 2 for x = 0, 2. For the B orientation

on a Z4 invariant torus, the values of N
ΩRθ−x,(m)
O6 for x even and odd are exchanged compared to the A

torus.
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N = 1 Matter for branes parallel on T 2
3

mult. (aΩRθ−k) rep.

x
(3)
Z2−pairs (∗) (Ni

a,N
j
b) + c.c.

x
(3)
Z2

(∗) (Ni
a,N

i
b) or (N

i
a,N

j
b)i6=j

y
(3)
0 (∗) Antiia + Symi

a + c.c.

y
(3)
Z2

(∗) Anti
i
a + Sym

i
a

y
(3)

ΩRθ−k (+) Symi
a + c.c.

(−) Antiia + c.c.

y
(3)

ΩRθ−k+N (+) Symi
a + Anti

i
a

(−) Antiia + Sym
i
a

y
(3)

Z2+ΩRθ−k (+) Sym
i
a

(−) Anti
i
a

Table 6: N = 1 supersymmetric sectors occurring for branes a and (θkb) or (θka′) parallel along

the two-torus T 2
3 where Z2 acts non-trivially. The symmetric and antisymmetric representations

are listed for the case of identical ΩRθ−k eigenvalue for the two multiplets of opposite chirality and

Z2 eigenvalue.

taking complex conjugates except for the y
(3)
Z2

entry which is independent of the orientifold

projection. The generalisation to including Wilson lines along the two-torus with Z2 action

and a non-vanishing angle is implemented as before by adjusting the interpretation of

x
(3)
Z2−pairs as a sum of Z2 invariant intersection points including relative signs. A relative

Wilson line along the parallel direction provides a mass, see equation (3.3).

Bifundamental matter at intersections with orientifold invariant branes is computed in

the same way, the ΩRθ−k action on Chan-Paton labels, however, differs and is discussed

in appendix C.

4. Gauge couplings

The gauge coupling constant ga for a gauge factor Ga at the energy scale µ < Mstring is at

one loop given by

8π2

g2
a(µ)

=
8π2

g2
a,string

+
ba
2

ln

(

M2
string

µ2

)

+
∆a

2
. (4.1)

The three contributions on the right hand side are

• The tree level gauge coupling ga,string and fine structure constant αa,string (see e.g. [31])

1

αa,string
=

4π

g2
a,string

=
MPlanck

2
√

2κaMstring

Va√
V6
, (4.2)
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where V6 is the six dimensional compact volume, Va the volume of the three-cycle

wrapped by brane a and κa = 1 for SU(Na) gauge groups. κa = 2 applies to Sp(2Na)

and SO(2Na) gauge groups. The dilaton dependence has been eliminated from (4.2)

by inserting the gravitational and string scales, MPlanck and Mstring, and α−1
a,string

depends only on the complex structure moduli. A universal one-loop correction is

included in (4.2) when the redefinition of the dilaton and complex structure moduli

at one-loop level is inserted [32]. At the orbifold point, all exceptional cycles have

zero volume, and the volume of a fractional cycle is simply given by its toroidal part,

Va =cLa
1 · La

2 · La
3

=c(r1r2R1)

[(

1+b2
R2

2

R2
1

)

(

ã2
1+ã1ã2+ã2

2

)

+2b
R2

2

R2
1

(

ã1ã3+
ã1ã4+ã2ã3

2
+ã2ã4

)

+
R2

2

R2
1

(

ã2
3 + ã3ã4 + ã2

4

)

]1/2

,

(4.3)

where ri are the radii on T 2
i for i = 1, 2 andR1, R2 those on T 2

3 and ã1ã4+ã2ã3
2 = ã1ã4 =

ã2ã3 with the bulk wrapping numbers ãi introduced in section 2. The constant c takes

care of the different normalisation of a fractional cycle compared to a toroidal one.

For the massless linear combination U(1)X =
∑

i xi U(1)i with U(1)i ⊂ U(Ni), the

fine structure constant is given by8

1

αX
=
∑

i

2Ni x
2
i

1

αi
. (4.4)

• The running of the gauge coupling at one-loop due to massless string modes charged

under Ga = SU(Na) encoded in the beta function coefficient ba with

bSU(Na) = −Na

(

3 − ϕAdja

)

+
∑

b6=a

Nb

2

(

ϕab + ϕab′
)

+
Na − 2

2
ϕAntia +

Na + 2

2
ϕSyma .

(4.5)

For U(1)a gauge groups inside U(Na) factors, the coefficient is

bU(1)a
= Na

(

∑

b6=a

Nb

(

ϕab + ϕab′
)

+ 2 (Na + 1)ϕSyma + 2 (Na − 1)ϕAntia
)

, (4.6)

with the beta function coefficient for a massless U(1)X =
∑

i xi U(1)i factor given by

bX =
∑

i

x2
i bi + 2

∑

i<j

NiNjxixj

(

−ϕij + ϕij′
)

. (4.7)

8The factor 2Ni is due to the different prefactors of the canonical four dimensional kinetic terms for

Abelian and non-Abelian gauge fields, −
R

R1,3

„

1
4g2

U(1)

FU(1) ∧ ⋆FU(1) + 1
2g2

SU(N)

tr
`

FSU(N) ∧ ⋆FSU(N)

´

«

, with

the quadratic Casimir of the fundamental representation of SU(N) normalised to 1/2 and the fact that

tr
`

FU(N) ∧ ⋆FU(N)

´

= tr
`

FSU(N) ∧ ⋆FSU(N)

´

+ N FU(1)diag
∧ ⋆FU(1)diag

as noted e.g. in [33].
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U(3)a × U(2)b × U(1)c × U(1)d

particle n

QL χab + χab′

uR χa′c + χa′d

dR χa′c′ + χa′d′ + χAntia

L χbc + χbd + χb′c + χb′d

eR χcd′ + χSymc + χSymd

QY = 1
6Qa + 1

2Qc + 1
2Qd

Table 7: The fertile standard model-like configuration with n generations. The number of right-

handed neutrinos νR as well as the number of “chiral” Higgs candidates (Hu, Hd) are left as free

parameters. In the last line, the hyper charge QY is given as a linear combination of the original

U(1) factors.

• The one-loop gauge threshold correction ∆a due to charged massive string modes.

This correction has been computed for bulk D6-branes in [34 – 36] and for rigid

D6-branes in [32, 37]. For the fractional non-rigid D6-branes employed in this article,

to our knowledge no explicit result has been obtained so far. Since the threshold

corrections are expected to be tiny at energy scales µ well below the string scale, we

are postponing their discussion to future work [30] and neglecting them at this point

in our statistical analysis of vacua.

5. Standard model constraints

In [11], we considered the most general way to obtain n standard model generations from at

most four different D6-branes with initial gauge group U(3)a×U(2)/Sp(2)b×U(1)c×U(1)d
and right-handed quarks and leptons realised either as bifundamental or antisymmetric

representations. We furthermore imposed supersymmetry and RR tadpole cancellation on

all possible brane configurations. It turned out that only one single option of the four

possibilities led to n generation standard model-like spectra. The prolific configuration is

displayed in table 7.9

The number of right-handed neutrinos νR and “chiral” Higgs particles10 are kept as

free parameters. The standard model constraints in table 7 imply that vector like pairs

9To be exhaustive, all four possible combinations QY = 1
6
Qa±

1
2
Qc±

1
2
Qd corresponding to permutations

of orientifold image branes c ↔ c′ and d ↔ d′ should be considered. A check of random samples showed

that all four choices have the same statistical behaviour. The standard model configurations with QY as

defined in table 7 is therefore complete up to some statistical factor of the order of O(4).
10Only right-handed neutrinos and Higgs particles stemming from non-vanishing intersection numbers

are expected to contribute to the Yukawa couplings in the superpotential. Pairs of Higgs particles (Hu, Hd)

are “chiral” in the sense of having different charges under massive U(1) symmetries which impose selection

rules on perturbative couplings, but non-chiral w.r.t. the standard model gauge group.
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w.r.t. the standard model, (1,2)1/2 + (1,2)−1/2, can occur. In the absence of any other

gauge group, these representations have an interpretation of Higgs pairs Hu +Hd, and as

discussed in section 7, in the presence of of a B − L symmetry, they might either form

Higgs pairs or lepton-anti-lepton pairs. In the statistical approach in section 6, possible

B − L symmetries are not explored, but only the number h of vector like pairs w.r.t. the

standard model gauge group in the (1,2)1/2 + (1,2)−1/2 representation which stem from

non-vanishing intersection numbers are computed as

h =
1

2

(

|χbc| + |χbd| + |χb′c| + |χb′d| − |χbc + χbd + χb′c + χb′d|
)

. (5.1)

The hyper charge QY remains massless after the generalised Green Schwarz mechanism

provided that its effective three-cycle

ΠY =
1

2
(Πa + Πc + Πd) (5.2)

is ΩR invariant, i.e. ΠY = Π′
Y , which is equivalent to ~Ya+ ~Yc+ ~Yd = 0 with the toroidal con-

tributions Y1, Y2 defined in table 1 and corresponding entries (Y3 . . . Y6) for the exceptional

parts given in appendix D in equation (D.9).

While individual gauge couplings depend on the string, Planck and compactification

scale as well as some numerical factor, their ratios are independent of these quantities. The

quotient of strong and electro-weak fine structure constants,

αs

αw
=
VU(2)b

VU(3)a

, (5.3)

is one characteristic quantity, the weak mixing angle θw with

sin2θw =
αY

αY + αw
(5.4)

another one. We compute both parameters at tree level in section 6.

In [31], it was further argued that if there is some underlying Pati-Salam symmetry,

the fine structure constants are related by

1

αY
=

2

3

1

αs
+

1

αw
, (5.5)

and in case of an SU(5) GUT even more constrained by

1

αs
=

1

αw
=

3

5

1

αY
, (5.6)

which includes the previous case. The statistical evaluation in section 6.4 does not point

to the presence of any of these GUT relations in the T 6/Z′
6 background.

In [11], also SU(5) and Pati-Salam configurations have been considered with the result

that on the T 6/Z′
6 orbifold SU(5) models occur only with an even number of generations

and some chiral states in the 15 representation of SU(5) whereas a Pati-Salam group arises
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only for odd numbers of generations and generically with a large number of chiral exotics.11

For the sake of completeness of GUT searches, we present in appendix E the solutions for

trinification models which turn out to give results only for two generations and a bunch of

chiral exotics.

The statistical analysis in the remainder of this article focuses on supersymmetric

standard model-like spectra with the hyper charge assignment as in table 7.

6. Statistics

In this section we present the results of a statistical survey of standard model-like solutions.

The results have been obtained by constructing all models explicitly, such that we do not

have to worry about intrinsic problems of samples or unwanted correlations [22].

6.1 Relation between solutions on different geometries

In [11], we found that for a given shape of the T 2
3 lattice (or a given b ∈ {0, 1/2}), the num-

ber of solutions to the bulk supersymmetry and RR tadpole cancellation conditions (2.5)

and (2.4) with bulk entries listed in table 1 is identical for the AB and BB geometries on

T 2
1 ×T 2

2 , similarly for AA and BA. The frequency of the former is by a factor O(10) higher

than the latter, and bulk models with b = 1/2 are suppressed by a factor of 10 and 6, re-

spectively, compared to the b = 0 ones. In appendix D, we prove analytically that the bulk

solutions on these pairs of lattices are related by a redefinition of the complex structure

modulus ̺→ 3
4̺ in combination with a rotation π(1/3, 0,−1/2) of the bulk cycle wrapping

numbers. This change of parameters carries over to the toroidal part of the full solutions

with fractional cycles and standard model-like properties to be discussed below, where,

however the suppression of AA and BA geometries is enhanced to a factor of O(108−109)

for b = 0 compared to AB and BB, and the suppression factors for b = 1/2 are O(10−4)

and O(10−6 − 10−7), respectively.

6.2 Counting standard model-like solutions

We found 4.43×1015 supersymmetric standard model-like solutions with three generations

and massless hyper charge QY in [11]. One or two generations and a massless QY occurs

for 3.42×1019 and 1.63×1012 configurations, respectively, while no model is found for four

or more generations, even when allowing for a massive hyper charge.

Out of the eight possible geometries only four, namely ABa/b and BBa/b, allow for

standard model-like solutions, where the variants where the third torus is tilted contribute

only to models with two quark-lepton families. The situation is depicted in figure 1.

6.3 Complex structure dependence

In order to compare with the analysis of [20], in figure 2 and table 8 we plot the number

of standard model-like spectra in dependence of the number n of generations and complex

structure parameter ̺ =
√

3
2

R2
R1

.

11The search for Pati-Salam configurations in [11] was, however, restricted to a very specific intersection

pattern and consequently there might be undetected models with less chiral exotics or Sp(2) gauge factors.
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Figure 1: Distribution of supersymmetric solutions to the RR tadpole equations with gauge group

and chiral matter content of the standard model for different numbers of generations and the four

geometries where such models occur (the other four possibilities AAa/b and BAa/b do not lead

to any standard model-like solutions). The hidden sectors and number of chiral exotics have not

been constrained. Note that this plot includes all possibilities, more than three generations do not

occur.

The results for three generation models differ from those found in [20], which were

̺ = 1
2 ,

3
2 , 1,

1
4 for AAa and 1

2 ,
3
2 , 3,

3
4 for BAa and 3 for BBa and 1

4 for ABa in our

notation, since the first two lattices in [20], AAa and BAa, are ruled out in our analysis

by the RR tadpole cancellation conditions, which had not been imposed in [20]. The ABa

and BBa lattices have supersymmetric solutions to the RR tadpole conditions with three

chiral quark-lepton generations where our complex structure parameter ̺ takes in total five

different values per lattice orientation opposed to one each reported in [20] which turns out

to be the one with lowest frequency in our analysis. This might be related to the fact that

the constraint on three left handed quark generations (χab, χab′) = (2, 1) or (1, 2) in [20] is

more restrictive than our ansatz χab + χab′ = ±3 in table 7.12

Due to the vast amount of data, in the following we will restrict our attention to one

of the two geometries, ABa, where three generation models exist. For the BBa geometry,

we expect essentially the same statistical behaviour as confirmed by random samples, the

equivalence of bulk solutions proved in appendix D as well as the check that the relations

and abundances of complex structure parameters for standard model-like configurations

are as discussed above.

12As we will see in section 6.7 there do not exist any supersymmetric solutions to the RR tadpole

conditions without chiral exotics that have (χab, χab′) = (2, 1) or (1, 2).
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Figure 2: Distribution of the complex structure parameters ̺ for the ABa geometry depending

on the number of generations: yellow, red and blue correspond to three, two and one generation,

respectively.

Complex structure distribution

1 generation 2 generations 3 generations

̺ #models ̺ #models ̺ #models

1
2 8.7 · 1018 1

5 2.5 · 1011 1
2 9.7 · 109

5
2 3.4 · 1013 1

4 9.6 · 106

7
6 2.7 · 106 1

6 1.2 · 1014

3
2 4.9 · 1014

9
4 4.9 · 107

Table 8: Possible values of complex structure parameters ̺ on T 2
3 and their abundance for n

generation models from the ABa geometry. The allowed complex structures on the BBa lattice

are obtained by identifying ̺ABa = 3

4̺BBa

with multiplicities which are by a factor O(1−10) bigger

for each matching ̺ value than the ones displayed here.

6.4 Gauge couplings

The ratio αs/αw = VU(2)b
/VU(3)a

for fine structure constants takes several different values

for different numbers of generations as depicted in figure 3. Also the values of the weak

mixing angle (5.4) at the string scale are scattered broadly as shown in figure 4.

This distribution of values can be compared to the measured quantities at the electro-

– 22 –



J
H
E
P
0
7
(
2
0
0
8
)
0
5
2

wα/sα
0 2 4 6 8 10 12

m
od

el
s

1

210

410

610

810

1010

1210

1410

1610

1810

1910

Figure 3: The tree level ratio of fine structure constants αs/αw for standard-like models on the

ABa lattice (yellow, red and blue correspond to three, two and one generation,respectively).

Figure 4: Combined distribution of the tree level ratios of αs/αw and the weak mixing angle θw

on the ABa lattice. A triangle, circle and square correspond to three, two and one generation

models, respectively. Note that the colour scale on the right, which encodes the number of models

with given values of (αs/αw, sin
2θw), is logarithmic.

weak scale (MZ ≈ 91 GeV),

αs(MZ) ≈ 0.1, αelectro−magnetic(MZ) ≈ 1

128
, sin2θw(MZ) ≈ 0.23, (6.1)
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as well as results from intersecting D6-branes on other orbifolds. On T 6/Z2 × Z2 [5], the

Pati-Salam relation (5.5) on gauge couplings was fulfilled in 88% of the models, but less

than 3% were compatible with the SU(5) GUT relation (5.6) on the non-Abelian gauge

groups.13 In the T 6/Z6 background with three generations [38, 10], the situation was the

reverse: since all D6-branes were wrapping the same bulk cycle, αs = αw was fulfilled

but the hyper charge as defined in table 7 was not compatible with (5.5). On the other

hand, redefining QY = (Qa/3+Qc +Qd +Qe)/2 admitted to interpret the additional chiral

particles as three generations of Higgs multiplets with non-standard Yukawa couplings

and (5.5) and (5.6) were both met. The situation here differs from the other orbifolds

in that αs 6= αw for any number of generations, and there is no obvious relation (5.5).

The values at the string scale also deviate considerably from those in equation (6.1) at

the electro-weak scale, which is, however, not too surprising in view of a high string scale

Mstring ∼ 1016−1019 GeV and non-vanishing beta functions as well as threshold corrections

for each gauge coupling.

6.5 Number of Higgs multiplets

The distribution of models with different numbers h of “chiral” Higgs generations (plus

some vector like lepton pairs in case of a massless B − L symmetry), computed as given

in (5.1), is shown in figure 5. In this plot we consider only models with three generations

of standard model-like matter in the ABa geometry that have a massless hyper charge.14

It is interesting to notice that “chiral” Higgs generations (plus some vector like lepton

pairs) can only appear as multiples of three. Up to the maximum value of 21 all possibilities

with the exception of 15 appear. Statistically, a value of three chiral multiplets is clearly

favoured, with a total number of models two orders of magnitude above all other solutions.

This distribution suggests that the number of “chiral” Higgs multiplets is correlated with

the constraint to obtain standard model matter with three families of quarks and leptons

on this particular orbifold background and is not expected to be of any generality.

6.6 Chiral exotics

Within the three generation models, a wide variety of hidden sector configurations is found

and almost all of the models have a large number of chiral exotics. To quantify their

amount we use the total value of chiral matter multiplets between the visible and hidden

sector, defined as [11]

ξ :=
∑

v∈V
h∈H

∣

∣

∣χvh − χv′h
∣

∣

∣ , (6.2)

where V = {a, b, c, d} is the set of branes in the standard model sector and H contains all

other stacks of (hidden) branes.

13The analysis included only one and two generation models, since no explicit three generation model

was found due to the cut-off method used for the statistical treatment.
14As already mentioned earlier, models originating from the BBa geometry are related by a rotational

symmetry, so no new results can be expected there.
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Figure 5: Number of “chiral” Higgs generation candidates (plus vector like lepton pairs in the

presence of a B − L symmetry) as defined in equation (5.1) for three-generation standard model-

like configurations on ABa.
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Figure 6: Normalised distribution of the total number of chiral exotics ξ, as defined in equa-

tion (6.2) for three-generation standard model-like configurations on ABa.

For models on the ABa torus, the statistical result is shown in figure 6. While inter-

preting this plot, one should keep in mind that the total amount of solutions is presented

on a logarithmic scale. In particular, there is a maximum of the distribution at ξ = 26

and an exponential falloff towards larger numbers of exotic matter. This is to be expected,

since the appearance of “long” branes, admitting big intersection numbers, is exponentially
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Figure 7: Relation between the number h of Higgs families (plus some vector-like lepton pairs)

and total number ξ of chiral exotics. The normalised frequency of a given pair (ξ, h)is encoded in

the logarithmic colour scale on the right.

suppressed compared to shorter branes. Additionally one observes that even numbers of

chiral exotics are clearly preferred. This is an artefact of the geometric set-up, much in the

same way as an enhancement of even numbers for the total rank of the gauge group was

observed in [5].

Although statistically largely suppressed, there do exist models without any chiral

exotics. A more detailed analysis of these solutions will be the subject of section 6.7.

6.6.1 Correlation between “chiral” Higgs multiplets and chiral exotics

In table 9 and figure 7 the relation between the number h of “chiral” Higgs generations

(plus some vector-like lepton pairs) and the total number ξ of chiral exotics is shown. The

two quantities are obviously not independent of each other. In particular one notes that it

is impossible to obtain models with an a priori small number of “chiral” Higgs multiplets

and a small number of chiral exotic matter at the same time.

This result implies that even if one allows for a small number of chiral exotics, the num-

ber of Higgs multiplets will always be larger than what is desired from a phenomenological

perspective unless there exist terms in the low energy effective field theory which render

all but one Higgs generation sufficiently massive. A larger Higgs sector might eventually

also be useful to address the mass hierarchy of standard model particles [39].

6.7 Models without chiral exotics

In total, 7,139,328 models without chiral exotics as defined in (6.2) exist on the ABa

lattice. The vast majority of these models has the same ratios of tree level gauge couplings,

namely αs/αw = 6.0 and sin2 θw = 0.654, as well as twelve families of “chiral” Higgses

(Hu,Hd) candidates (or vector-like lepton pairs) which due to the massless B−L symmetry
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Counting of chiral exotics and chiral Higgs families

ξ h P ξ h P ξ h P ξ h P ξ h P

0 12 1.13×10−7 21 3 9.36×10−4 34 6 1.53×10−5 47 3 3.08×10−5 62 0 5.96×10−5

0 18 7.87×10−10 22 3 2.44×10−2 34 9 3.78×10−8 47 6 2.48×10−8 62 3 1.31×10−3

0 21 1.97×10−10 22 6 9.79×10−5 35 3 8.38×10−4 48 0 2.67×10−4 63 3 1.77×10−5

3 9 3.97×10−7 22 9 5.44×10−6 36 0 2.04×10−4 48 3 4.45×10−3 64 0 5.71×10−5

3 18 6.89×10−10 22 18 9.44×10−9 36 3 2.59×10−2 48 6 9.09×10−4 64 3 3.97×10−4

5 6 2.72×10−6 23 3 3.60×10−3 36 6 2.90×10−5 49 0 9.92×10−8 64 6 2.86×10−7

6 9 2.25×10−5 24 3 1.32×10−1 37 3 2.62×10−4 49 3 3.78×10−5 66 3 9.53×10−4

6 18 4.56×10−8 24 6 4.51×10−4 38 3 3.79×10−2 49 6 3.14×10−7 66 6 1.26×10−6

7 6 1.50×10−5 25 3 2.95×10−3 38 6 6.19×10−7 50 0 1.45×10−6 67 6 2.36×10−7

8 3 1.60×10−5 25 6 2.20×10−8 39 3 9.04×10−5 50 3 1.18×10−2 68 0 1.14×10−6

8 6 1.56×10−4 26 3 1.43×10−1 39 6 5.78×10−7 50 6 3.33×10−5 68 6 2.01×10−5

9 3 1.09×10−5 26 6 5.04×10−5 40 0 1.51×10−7 51 0 1.26×10−6 69 0 4.23×10−7

9 6 2.58×10−5 27 0 3.97×10−7 40 3 2.99×10−2 51 3 1.51×10−5 70 0 1.64×10−6

9 9 2.75×10−9 27 3 1.79×10−3 40 6 5.79×10−5 52 0 3.49×10−4 70 3 1.41×10−4

10 3 8.95×10−5 27 6 3.15×10−7 41 0 2.31×10−6 52 3 1.91×10−3 72 0 1.99×10−5

10 6 8.56×10−4 28 3 3.33×10−2 41 3 1.96×10−4 52 6 2.39×10−7 72 3 1.56×10−5

11 3 1.59×10−3 28 6 2.24×10−4 41 6 2.18×10−6 53 3 1.13×10−5 72 6 4.31×10−6

12 3 7.91×10−4 29 3 1.34×10−3 42 0 9.48×10−4 54 0 2.85×10−5 73 3 3.77×10−6

12 6 1.48×10−3 29 6 3.31×10−8 42 3 4.48×10−2 54 3 7.11×10−3 74 3 3.12×10−4

13 3 8.46×10−3 30 0 2.63×10−5 42 6 1.91×10−4 54 6 2.83×10−8 74 6 5.19×10−7

14 3 5.10×10−2 30 3 5.60×10−2 43 0 8.73×10−6 56 3 7.68×10−4 75 3 6.76×10−6

15 3 7.70×10−3 30 6 5.22×10−5 43 3 4.76×10−6 56 6 3.05×10−4 78 0 9.09×10−7

16 3 8.32×10−2 31 0 1.32×10−7 43 6 3.67×10−6 57 6 1.36×10−7 78 3 3.50×10−4

16 6 1.63×10−5 31 3 1.70×10−3 44 0 1.08×10−3 58 0 1.13×10−7 80 3 8.31×10−6

17 3 1.93×10−3 31 6 1.65×10−8 44 3 1.11×10−2 58 3 2.76×10−3 82 3 3.43×10−5

18 3 1.13×10−1 32 3 4.66×10−2 44 6 2.12×10−4 58 6 4.33×10−5 84 6 8.92×10−7

18 6 1.88×10−4 32 6 2.28×10−4 45 0 6.16×10−6 59 0 5.45×10−7 88 0 1.23×10−6

18 9 2.26×10−7 33 0 3.60×10−6 45 3 3.88×10−6 60 0 2.45×10−5 90 3 1.43×10−5

19 3 5.77×10−5 33 3 1.12×10−3 46 0 2.11×10−4 60 3 1.53×10−6 94 3 1.82×10−5

20 3 2.10×10−3 34 0 1.09×10−5 46 3 2.47×10−2 60 6 3.98×10−5

20 6 6.04×10−4 34 3 6.21×10−2 46 6 2.61×10−4 61 3 3.77×10−6

Table 9: Normalised frequencies P of three generation standard-like models for a given number ξ

of chiral exotics and h of “chiral” Higgs families (or vector-like lepton pairs).

discussed below actually split into nine (Hu,Hd) generations plus three vector-like lepton

pairs. Besides that there are two smaller groups of models with different ratios of gauge

couplings and more Higgs candidates as displayed in table 10.

6.7.1 Visible sector

The standard model sectors are all very similar in the models without chiral exotics. The

chiral matter spectrum, that is responsible for the standard model particles as shown in
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h αs/αw sin2 θw # models

12 6 0.654 7,077,888

18 4 0.667 49,152

21 12 0.720 12,288

Table 10: Number of “chiral” Higgs candidates h, ratio of αs/αw and weak mixing angle for

models without chiral exotic matter.

table 7, is identical for all models with the same number of Higgs candidates:

h= 12 : χab = 0, χab′ = 3, χac =−3, χac′ =−3, χad =0, χad′ = 0,

χbc =−9, χbc′ =−9, χbd =6, χbd′ = 3,

χcd =−3, χcd′ = 3;

h= 18 : χab =−3, χab′ = 6, χac =−3, χac′ =−3, χad =0, χad′ = 0,

χbc =−6, χbc′ =−6, χbd =15, χbd′ = 12,

χcd =−3, χcd′ = 3;

h= 21 : χab = 0, χab′ = 3, χac =−3, χac′ =−3, χad =0, χad′ = 0,

χbc =−18, χbc′ =−18, χbd =6, χbd′ = 3,

χcd =−3, χcd′ = 3.

(6.3)

Furthermore it turns out that in the absence of chiral exotics brane c is always parallel

to some ΩRθ−k invariant plane with ~Yc = 0 (as defined in table 1 and equation (D.9))

and therefore carries an U(1)c gauge group15 which arises from the breaking of an SO(2)c
or Sp(2)c gauge group by parallel displacement on T 2

2 away from the orientifold plane.

Together with the condition that the hyper charge is massless (see table 7 and (5.2)) this

leads to the conclusion that there exists always a massless U(1)B−L symmetry. A more

detailed discussion of this issue using explicit examples can be found in section 7.

6.7.2 Hidden sector

The hidden sectors of these models are in general very small, with a maximum of three

additional branes. This is a direct consequence of the orbifold geometry leading to small

maximal values in the RR tadpole equations, which distinguishes T 6/Z′
6 from other orb-

ifolds that allow for larger hidden sectors.

The distribution of the numbers of hidden sector stacks and the ranks of their gauge

groups is shown in table 11 and figure 8(a).

The models without any hidden sector correspond to those with h = 18 or 21 (de-

composing into 6 and 18 “chiral” Higgs multiplet pairs (Hu,Hd) plus 12 and 3 vector-like

lepton pairs, respectively, due to the U(1)B−L symmetry) in table 10. This implies that

all models with a hidden sector have the same amount of 9 “chiral” Higgs multiplets plus

3 vector-like lepton pairs arising from non-vanishing intersection numbers as well as the

same tree level values for αs/αw and sin2 θw at the string scale.

15Brane c in all these models belongs to type (1) in the classification of invariant branes in [11].
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s {Ni} # models

0 61,440

1 1 147,456

3 442,368

2 2,1 2,433,024

3 1,1,1 4,055,040

Table 11: Number of hidden sector branes s and rank distribution {Ni} of the gauge groups for

standard-like models without chiral exotic matter.
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Figure 8: Distributions of properties of the hidden sector of standard model-like configurations

without chiral exotic matter. (a) the number of hidden sector branes s; (b) probability to find a

hidden sector gauge group factor of rank N .

N # models P(N)

1 6,635,520 0.929

2 2,433,024 0.341

3 442,368 0.062

Table 12: Distribution of hidden sector gauge groups of rank N and probability to find a gauge

group of specific rank for standard-like models without chiral exotic matter.

In table 12 and figure 8(b) the probability distribution to find a gauge group of rank

N within the hidden sector is shown. Besides the fact that it is cut off at a maximal rank

of three, the distribution does not show differences to the more general case investigated

in [11]. This is in good agreement with the results obtained for different orbifold back-

grounds [5, 10], where it has also been found that the distribution of properties in the
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visible sector hidden sector

s h ϕAdja ϕAdjb ϕAdjc ϕAdjd ϕAdjh1 ϕAdjh2 ϕAdjh3 # models

0 18 2 4 4 10 49,152

21 2 10 4 10 12,288

1 12 2 10 4 10 2 147,456

12 2 10 4 10 10 442,368

2 12 2 10 4 10 2 2 2,433,024

3 12 2 10 4 10 2 2 2 4,055,040

Table 13: Number of hidden sector branes s, number h of “chiral” Higgs candidates plus vector-like

lepton pairs from non-vanishing 3-cycle intersection numbers and number of adjoint representations

for standard model-like spectra without chiral exotic matter. In case the hidden brane hi is of

SO/ Sp(2N) type, the counting of adjoints is replaced by counting symmetric plus antisymmetric

representations, ϕAdjhi → ϕSymhi + ϕAntihi .

hidden sector does not vary significantly with respect to the distribution in the full set of

solutions.

6.7.3 Adjoint representations

The number of adjoint representations for the different gauge groups in the visible and hid-

den sectors are very similar for the different realisations of standard-like models without

chiral exotics. The result of a statistical analysis is shown in table 13, where for hidden

SO/Sp(2N) gauge groups instead of adjoints the number of symmetric plus antisymmet-

ric representations is listed, i.e. ϕAdjU(N) ≃ ϕSymSO/Sp2N) + ϕAntiSO/Sp2N) if the toroidal

wrapping numbers (ni,mi) are identical.

This result was to be expected, since the exceptional part of the brane configuration

does not play a role in determining the number of adjoints, as can be seen from the

discussion in section 3.2.

7. Explicit standard model-like realisations

Three examples with the chiral spectrum of the standard model, nine “chiral” Higgs gener-

ations, a massless B−L symmetry and three different types of hidden sectors are discussed

in section 7.1, and subsequently a model without hidden sector, 18 “chiral” Higgs genera-

tions and a massless U(1)B−L is presented in section 7.2.

7.1 Three generation models with hidden sectors

In the following, we present three explicit realisations of three generation models without

chiral exotics with hidden sector gauge groups SO/Sp(6), SO/Sp(4) × SO/Sp(2) and
̂SO/Sp(2), respectively,16 where the bulk part of the hidden stacks h3 and (h2, h1) are

16The gauge group for a stack of N orientifold invariant branes can be either SO(2N) or Sp(2N). We

abbreviate this by SO/ Sp(2N) since the correct assignment is unknown.
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Standard model ex.: bulk brane configuration

brane (n1,m1;n2,m2;n3,m3) N ã1 ≡ P, ã2 ≡ Q, ã3 ≡ U, ã4 ≡ V

a (1,−1; 1, 0; 0, 1) 3 0, 0, 1, -1

b (1, 1; 2,−1; 1, 1) 2 3, 0, 3, 0

c (1,−1;−1, 2; 1, 0) 1 1, 1, 0, 0

d (1, 1; 1,−2; 0, 1) 1 0, 0, 3, -3

h3 or h2 + h1 (1,−1; 1, 0; 0, 1) 3 or 2+1 0, 0, 1, -1

ĥ1 (1, 1; 1,−2; 0, 1) 1 0, 0, 3, -3

Table 14: Bulk brane configuration for standard model-like examples with hidden sectors

SO/ Sp(6)h3 or SO/ Sp(4)h2 × SO/So(2)h1 or ̂SO/ Sp(2)ĥ1
.

Standard model ex.: exceptional brane configuration

brane d1, d2, d3, d4 e1, e2, e3, e4 σ1, σ2, σ5, σ6 τ0, τ1, τ3

a 0, 1, -1, 0 0, 1, -1, 0 1
2 , 0, 1

2 , 0 0, 1, 1

b -3, 0, -3, 0 0, 0, 0, 0 1
2 , 0, 0, 0 1, 1, 0

c 0, 0, 3, -3 0, 0, -3, 3 1
2 , 0, 0, 1

2 0, 1, 1

d 0, -1, 1, 0 0, -1, 1, 0 0, 0, 1
2 , 0 0, 1, 1

h3 or h2 1, 0, 0, 1 -1, 0, 0, -1 0, 0, 0, 0 0, 1, 0

h1 1, 0, 0

ĥ1 3, 0, 0, 3 -3, 0, 0, -3 1
2 , 0, 0, 0 0, 1, 0

Table 15: Exceptional brane configuration for standard model-like examples with different hidden

sectors.

identical and the complex structure is ̺ = 1/2 for all three choices of hidden sectors. The

bulk configuration is given in table 14 and the exceptional part with displacements σi and

Wilson lines τ j in table 15. The hidden sector brane h1 differs from h3 and h2 only in the

assignment of (τ0, τ1).

Although brane c is parallel to the ΩRθ−4 plane with also the exceptional contributions

orientifold invariant and in the classification of [11] corresponds to brane (1c) with SO(2)c
or Sp(2)c gauge group, we assume here that brane c is displaced on the Z2 invariant

torus T 2
2 and the gauge group broken to U(1)c. We list here all states which arise in the

decomposition SO/Sp(2)c → U(1)c, namely Antic → 10 and Symc → 10 + 12 + 1−2,

however, one should keep in mind that by parallely separating brane c and (θc′) on T 2
2 , at

least one of the final states acquires a mass proportional to the distance of c and (θc′). The

intersection numbers are then given in table 16, and also the chiral plus non-chiral part

of the spectrum only charged under the observable sector involving branes a, b, c and d in

table 17 is universal.

The models differ in the purely non-chiral part of the spectrum with hidden sec-

tor charges. Their multiplicities are given in table 18. Branes hi are orthogonal to the
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Standard model ex.: chiral matter spectrum

brane χAnti χSym χ·b χ·c χ·d χ·b′

χ·c′ χ·d′

χ·h χ·h′

a 0 0 0 -3 (dR) 0 3 (QL) -3 (uR) 0 0 0

b 0 0 -9 (Hu) 6 (L) -9 (Hd) 3 (L) 0 0

c 0 0 -3 (νR) 3 (eR) 0 0

d 0 0 0 0

Table 16: The chiral spectrum [C] derived from non-vanishing 3-cycle intersection numbers is

identical for all three configurations with hidden branes h3 or h2 + h1 or ĥ1. The identifications

with standard model-like particles are given in parenthesis, see also equation (7.2).

Standard model ex.: complete observable matter spectrum

brane ϕAdj ϕAnti ϕSym ϕ·b ϕ·c ϕ·d ϕ·b′

ϕ·c′ ϕ·d′

a 2 6 0 0 3 6 5 3 6

b 10 8 12 11 8 11 7

c 4 (2x) 8 − 2x 5 5

d 10 (22) 0

Table 17: The universal chiral plus non-chiral matter spectrum of the standard model-like examples

with only charges under branes a, b, c, d. The models differ in their hidden sector gauge groups and

non-chiral matter charged under them as listed in table 18. 0 ≤ x ≤ 4 depends on the unknown

ΩRθ−k eigenvalues of the massless states at c(θk−1c) intersections.

ΩRθ−1+3k invariant planes on T 2
2 and carry SO/Sp(2i) gauge factors17 whereas ĥ1 is par-

allel to the ΩRθ−1 plane on all three tori corresponding to brane (2a) in the classification

of [11] providing a hidden ŜO(2)ĥ1
or Ŝp(2)ĥ1

gauge factor. In the observable sector, out

of the four U(1) factors, two stay massless. We choose the hyper charge Y and B − L

symmetry as basis,

QY =
1

6
Qa +

1

2
Qc +

1

2
Qd, QB−L =

1

3
Qa +Qd. (7.1)

The hidden sector gauge groups are either of type SO(2N) or Sp(2N). When broken

to U(N), the Abelian part will stay massless. Remember that the transverse degrees of

17The classification (1) and (2) of D6-branes in table 20 of [11] with SO(2N) or Sp(2N) gauge groups

comprised only those parallel to some ΩRθ−k planes along all two-tori. Branes hi are instead orthogonal to

some ΩRθ−k invariant plane on T 2
2 and also orthogonal on either T 2

1 or T 2
3 while being parallel to the same

orientifold plane on the remaining two-torus, a case overlooked before. One might worry about a new K-

theory constraint from the two new kinds of invariant branes (3) and (4), but it turns out that it is trivially

fulfilled also in these cases since the line of argument in [11] involved combinatorics of odd and even numbers

only, and, e.g., Πĥ1
= 3Πhi

as well as (nĥ1
j , mĥ1

j ) = (nhi
j , mhi

j )mod 2 do not alter this reasoning. We had

furthermore verified explicitly in [11] that the invariant branes (1) and (2) do not lead to any standard

model-like solutions with an Sp(2)b gauge factor. There might potentially be such configurations with the

new invariant branes of type (3) or (4), but since it is at present not clear if symplectic or orthogonal gauge

factors arise, this option is not taken into account in the present analysis.
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Standard model ex.: non-chiral exotic matter

brane ϕ·h3 = ϕ·h2 ϕ·h1 ϕ·ĥ1 brane ϕAnti ϕSym

a 0 0 0 h3, h2, h1 z 2 − z

b 2 2 8 ĥ1 y 10 − y

c 2 2 10

d 0 0 0

h2 2

Table 18: Matter at intersection with hidden branes for the three different models with hidden

sector gauge groups SO/ Sp(6), SO/ Sp(4)×SO/ Sp(2) and ̂SO/ Sp(2) corresponding to branes h3,

h2 + h1 and ĥ1, respectively. 0 ≤ z ≤ 2 and 0 ≤ y ≤ 10 depend on the undetermined ΩRθ−k

eigenvalues of massless states at hi(θ
k−1hi) and ĥ1(θ

k−1ĥ1) intersections, respectively.

freedom of the two massive U(1) factors, i.e. Qb and 3Qa −Qd, are provided by uncharged

closed string RR states and that the supersymmetry conditions (2.5) imply that no Fayet-

Iliopoulos term appears.

The (open string) matter spectrum thus consists of three sectors, [C] + [VU ] + [VH ],

where [C] contains all (chiral) matter derived from non-vanishing 3-cycle intersection num-

bers, [VU ] the vector like matter occurring in all three models (these are the adjoint rep-

resentations and N = 2 supersymmetric sectors in complex representations R + c.c.) and

[VH ] the vector like matter which differs for the three choices of hidden sectors (it contains

symmetric and antisymmetric representations of the hidden SO/Sp(2N) gauge factors as

well as N = 2 sectors in complex representations R + c.c.):

1. The chiral spectrum of ((S)U(3)a × (S)U(2)b)QY ×QB−L
which is identical in all mod-

els. In order to make the perturbatively allowed pattern of Yukawa couplings more

obvious, we also list the charges under the unphysical U(1)s as upper indices (Qc,Qd).

All states in this sector form N = 1 multiplets at intersections of two different stacks

of branes. For shortness, the (trivial) representation under the hidden gauge group

is not listed,

[C] = 3 ×
[

(3,2)
(0,0)
1/6,1/3

+
(

3,1
)(1,0)

1/3,−1/3
+
(

3,1
)(−1,0)

−2/3,−1/3

+ (1,1)
(1,1)
1,1 + (1,1)

(−1,1)
0,1 + 2 × (1,2)

(0,−1)
−1/2,−1

+ (1,2)
(0,1)
1/2,1

+ 3 ×
(

1,2
)(−1,0)

−1/2,0
+ 3 ×

(

1,2
)(1,0)

1/2,0

]

≡ 3 ×
[

QL + dR + uR + eR + νR + 2 × L+ L

]

+ 9 ×
[

Hd +Hu

]

,

(7.2)

with an net-number of three chiral lepton and nine (Hu,Hd) families. The B − L

charge reveals that there are furthermore three lepton-anti-lepton generations.

One can read off that the standard combinations for Yukawa couplings involving

uR ·QL ·Hu, dR ·QL ·Hd, eR · L ·Hd and νR · L ·Hu (7.3)
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are perturbatively allowed, whereas a µ term type combination Hu ·Hd is pertur-

batively forbidden by the U(1) symmetry inside U(2)b. Since global (anomalous)

symmetries are generally broken by non-perturbative effects, we expect an expo-

nentially suppressed µ-term to be generated by instanton corrections. Contrarily, a

right-handed neutrino Majorana mass term and quartic coupling appearing in the

see-saw mechanism,

νR · νR and L · L ·Hu ·Hu, (7.4)

are forbidden by the massless B − L symmetry.

2. The universal part of the non-chiral spectrum containing matter only charged under

stacks a, b, c, d consists of adjoints in the first line and N = 2 supersymmetric sectors

in the second to fifth line consisting of bifundamental, symmetric and antisymmetric

representations, the latter two being denoted by lower indices S and A, respectively.

We list the N = 2 part of the spectrum in complex representations in square brackets

in the form of chiral representations +c.c. (complex conjugate) where the “+c.c.”

applies to all representations inside the square bracket.

[VU ] = 2 × (8,1)
(0,0)
0,0 + 10 × (1,3)

(0,0)
0,0 + 26 × (1,1)

(0,0)
0,0

+

[

(3,2)
(0,0)
1/6,1/3 + 3 ×

(

3,1
)(0,1)

1/3,2/3
+ 3 ×

(

3,1
)(0,−1)

−2/3,−4/3

+ 3 ×
(

3A,1
)(0,0)

1/3,2/3
+ 4 × (1,1A)

(0,0)
0,0 + 6 × (1,3S)

(0,0)
0,0

+
(

1,2
)(−1,0)

−1/2,0
+ (1,2)

(0,−1)
−1/2,−1

+
(

1,2
)(1,0)

1/2,0
+ 2 × (1,2)

(0,1)
1/2,1

+ (1,1)
(1,1)
1,1 + (1,1)

(−1,1)
0,1 + (4 − x) × (1,1)

(2,0)
1,0 + c.c.

]

.

(7.5)

The parameter 0 ≤ x ≤ 4 depends on the undetermined ΩRθ−k eigenvalues of the

massless states on brane c.

The vector-like pairs
[

(1,1)
(−1,1)
0,1 + c.c.

]

might potentially trigger the breaking of

U(1)B−L without a simultaneous supersymmetry breaking.

3. The non-universal part containing matter charged under the hidden sector gauge

group where hidden sector representations are the last one or two entries separated

from the observable sector charges by a semicolon. Remarkably, no matter arises

at intersections of brane a and d with the hidden branes leading to QB−L = 0 in

this sector. The notation for the non-chiral matter is analogous to the one for the

universal part of the spectrum with antisymmetric and symmetric representations of

SO/Sp(2N) replacing the adjoints of U(N).

(a) For the hidden gauge group SO/Sp(6)h3

[VH1 ] = z × (1,1;15)
(0,0)
0,0 + (2 − z) × (1,1;21)

(0,0)
0,0

+

[

(1,2;6)
(0,0)
0,0 + (1,1;6)

(1,0)
1/2,0 + c.c.

]

.
(7.6)
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(b) Or for hidden sector gauge factors SO/Sp(4)h2 × SO/Sp(2)h1

[VH2 ] = z × (1,1;6,1)
(0,0)
0,0 + (2 − z) × (1,1;10,1)

(0,0)
0,0

+ z × (1,1;1,1)
(0,0)
0,0 + (2 − z) × (1,1;1,3)

(0,0)
0,0

+ 2 × (1,1;4,2)
(0,0)
0,0

+

[

(1,2;4,1)
(0,0)
0,0 + (1,2;1,2)

(0,0)
0,0

+ (1,1;4,1)
(1,0)
1/2,0;0 + (1,1;1,2)

(1,0)
1/2,0 + c.c.

]

.

(7.7)

(c) Or for a hidden ̂SO/Sp(2)ĥ1

[VH3 ] = y × (1,1;1A)
(0,0)
0,0 + (10 − y) × (1,1;3S)

(0,0)
0,0

+

[

4 × (1,2;2)
(0,0)
0,0 + 5 × (1,1;2)

(1,0)
1/2,0 + c.c.

]

,
(7.8)

where the parameters z and y depend on the undetermined ΩRθ−k eigenvalues of

the massless states at intersections of hi and ĥ1 with their orbifold images (θk−1hi)

and (θk−1ĥ1), respectively.

These models belong to the class of spectra with 9+3=12 “chiral” Higgs plus lepton-

anti-lepton families and no chiral exotics whose tree level ratio of gauge couplings are

given in table 10. The beta function coefficients for these models can be computed

explicitly,

bSU(3)a
= 14, bSU(2)b

=

{

70 h3, h2 + h1

72 ĥ1
,

bU(1)B−L
=

280

3
, bU(1)Y

=

{

305
6 − 2x h3, h2 + h1

157
3 − 2x ĥ1

.

(7.9)

Although interactions have to our knowledge not yet been computed for the type of frac-

tional D6-branes used in the construction, some of the non-chiral matter in the [VU ]+ [VH ]

sectors can be made massive by simply parallely displacing the one-cycles along T 2
2 away

from the origin and each other. The parallel transport preserves the supersymmetry con-

ditions (2.5), and the situation is depicted in figure 9 for branes b and c.

The mass scale is again set by the continuously variable distance ∆σ2 according to

equation (3.3).

After displacing all brane stacks relative to each other along T 2
2 , the chiral sector [C]

remains unchanged, but the vector like matter sector [VU ] is reduced (with 0 ≤ x̃ ≤ 3),

[VU ](∆σ2) = 2 × (8,1)
(0,0)
0,0 + 10 × (1,3)

(0,0)
0,0 + 25 × (1,1)

(0,0)
0,0

+

[

(3,2)
(0,0)
1/6,1/3 + 3 ×

(

3,1
)(0,1)

1/3,2/3
+ 3 ×

(

3,1
)(0,−1)

−2/3,−4/3

+
(

3A,1
)(0,0)

1/3,2/3
+ 6 × (1,3S)

(0,0)
0,0 + (3 − x̃) × (1,1)

(2,0)
1,0 + c.c.

]

,

(7.10)
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Figure 9: Gauge symmetry breaking and masses through parallel displacement on T 2
2 . (a) branes b

and c pass through the origin and carry gauge groups U(2)b×SO/ Sp(2)c. For brane c, the orientifold

images are related by (θkc) = (θk+1c′). (b) The displacement of brane c breaks SO/ Sp(2)c → U(1)c

and renders states at b(θ2c) and bc′ intersections massive.

whereas [VH1 ] and [VH2 ] are not affected. ̂SO/Sp(2)ĥ1
can be broken to U(1)ĥ1

via parallel

displacements leading to

[VH3 ]
(∆σ2) = 9 × (1,1)

(0,0)
0,0;0 + (9 − ỹ) ×

[

(1,1)
(0,0)
0,0,1 + c.c.

]

+ 3 ×
[

(1,2)
(0,0)
0,0;1 + (1,2)

(0,0)
0,0;−1 + (1,1)

(1,0)
1/2,0;1 + (1,1)

(1,0)
1/2,0;−1

+ c.c.

]

,

(7.11)

with 0 ≤ ỹ ≤ 9.

The beta function coefficients are then lowered to

b
(∆σ2)
SU(3)a

= 12, b
(∆σ2)
SU(2)b

= 65, b
(∆σ2)

U(1)Y
= 42 − 2x̃, b

(∆σ2)

U(1)B−L
= 72. (7.12)

These string-scale values are clearly not realistic, in particular b
(∆σ2)
SU(3)a

has the wrong sign.

7.2 A three generation model without hidden sector

As mentioned in section 6.7, we found 61,440 models without any hidden sector. There are

two types of models which can be classified by the number of h Higgs-up and h Higgs-down

multiplets (and vector-like lepton pairs) that occur. As shown in equation (6.3), there are

two groups with h = 18 and 21, respectively. In the following we analyse one example of

a model with h = 21 Higgs candidates, or more precisely 18 Higgs generations and three

vector-like lepton pairs distinguished by their B − L charge, in more detail.

The model is realised with a value of ̺ = 1/4 for the complex structure parameter

on T 2
3 . The configuration of bulk branes is given in table 19 and the exceptional part

containing the displacements σi and Wilson lines τ j in table 20.

In tables 21 and 22 we list the intersection numbers leading to the chiral and full

matter spectrum, respectively.

Concerning the U(1) factors, we again find that U(1)b and the combination 3U(1)a −
U(1)d are massive, but we have a massless U(1)B−L symmetry given by 1

3 U(1)a + U(1)d.

Furthermore brane c leads to an additional massless U(1), or provides a (purposefully

broken) SO/Sp(2) symmetry (brane c corresponds to (1a) in the classification of orientifold
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Ex. w/o hidden sector: bulk brane configuration

brane (n1,m1;n2,m2;n3,m3) N ã1 ≡ P, ã2 ≡ Q, ã3 ≡ U, ã4 ≡ V

a (1,−1; 1, 0; 0, 1) 3 0, 0, 1, -1

b (1, 1; 2,−1; 1, 2) 2 3, 0, 6, 0

c (1,−1;−1, 2; 1, 0) 1 1, 1, 0, 0

d (1, 1; 1,−2; 0, 1) 1 0, 0, 3, -3

Table 19: Bulk brane configuration for a standard model example without hidden sector. Only

mb
3 differs from the bulk configurations with hidden branes in section 7.1.

Ex. w/o hidden sector: exceptional brane configuration

brane d1, d2, d3, d4 e1, e2, e3, e4 σ1, σ2, σ5, σ6 τ0, τ1, τ3

a 0, -1, -1, 0 0, -1, -1, 0 1
2 0 1

2 0 1 1 0

b -3, -3, 0, 0 0, 0, 0, 0 1
2 0 0 0 1 1 0

c 3, 3, 0, 0 -3, -3, 0, 0 1
2 0 0 0 1 1 0

d 0, 1, 1, 0 0, 1, 1, 0 0 0 1
2 0 0 0 0

Table 20: Exceptional brane configuration for a standard model example without hidden sector.

Ex. w/o hidden sector: chiral matter spectrum

brane χAnti χSym χ·b χ·c χ·d χ·b′

χ·c′ χ·d′

a 0 0 0 -3 (dR) 0 3 (QL) -3 (uR) 0

b -9 0 -18 (Hu) 6 (L) -18 (Hd) 3 (L)

c 0 0 -3 (νR) 3 (eR)

d 0 0

Table 21: Chiral spectrum of a model without a hidden sector. The identifications with standard

model-like particles are given in parenthesis, see also equation (7.13).

Ex. w/o hidden sector: complete matter spectrum

brane ϕAdj ϕAnti ϕSym ϕ·b ϕ·c ϕ·d ϕ·b′

ϕ·c′ ϕ·d′

a 2 6 0 0 3 6 5 3 6

b 10 11 20 22 10 22 5

c 4 (2x) 8 − 2x 5 5

d 10 (22) 0

Table 22: The complete non-chiral matter spectrum of the standard model example without hidden

sector.

invariant branes in [11]). We can thus take U(1)B−L and U(1)Y to span the space of massless

Abelian gauge factors as in equation (7.1).
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The complete matter spectrum can be divided into a chiral part [C] derived from

non-vanishing 3-cycle intersection numbers,

[C] = 3 ×
[

(3,2)
(0,0)
1/6,1/3 +

(

3,1
)(1,0)

1/3,−1/3
+
(

3,1
)(−1,0)

−2/3,−1/3
+ (1,1)

(1,1)
1,1 + (1,1)

(−1,1)
0,1

+ 2 × (1,2)
(0,−1)
−1/2,−1

+ (1,2)
(0,1)
1/2,1 + 6 ×

(

1,2
)(−1,0)

−1/2,0
+ 6 ×

(

1,2
)(1,0)

1/2,0

+ 3 ×
(

1,1A

)(0,0)

0,0

]

≡ 3 ×
[

QL + dR + uR + eR + νR + 2 × L+ L

]

+ 18 ×
[

Hd +Hu

]

+ 9 × S,

(7.13)

and a non-chiral part [V ], which consists of matter in the adjoint representation of the

gauge group and matter from the N = 2 sectors, listed here as chiral representations +c.c.

(complex conjugate) inside square brackets.

[V ] = 2 × (8,1)
(0,0)
0,0 + 10 × (1,3)

(0,0)
0,0 + 26 × (1,1)

(0,0)
0,0

+

[

(3,2)
(0,0)
1/6,1/3 + 3 ×

(

3,1
)(0,1)

1/3,2/3
+ 3 ×

(

3,1
)(0,−1)

−2/3,−4/3

+ (3 − x+ 1m) × (1,1)
(2,0)
1,0 + (1 + 2m) × (3A,1)

(0,0)
1/3,2/3

+ (9 + 1m) × (1,3S)
(0,0)
0,0 + 2m ×

(

1,2
)(−1,0)

−1/2,0

+ 2m ×
(

1,2
)(1,0)

1/2,0
+ 2m × (1,2)

(0,−1)
−1/2,−1

+ 1m × (1,2)
(0,1)
1/2,1

+ 1m × (1,1A)
(0,0)
0,0 + 1m × (1,1)

(1,−1)
0,−1 + 1m × (1,1)

(1,1)
1,1 + c.c.

]

.

(7.14)

To keep the notation compact, the multiplicities of non-chiral states which arise from sec-

tors with D6-branes parallel along T 2
2 and thus massive when branes are parallely displaced

in a continuous manner are labelled by a lower index m. The last two lines of [V ] disap-

pear completely from the massless spectrum if suitable distances ∆σ2 are chosen, and the

multiplicities of states in the third and fourth line of [V ] are reduced.

All states in the “chiral” sector [C] derive from non-vanishing intersection numbers,

but as in the previous examples, since U(1)b acquires a mass through the Green Schwarz

mechanism by absorbing a neutral closed string field, the pairings of Higgs fields, Hd +Hu,

and leptons, L + L, and the states S ≡
(

1,1A

)(0,0)

0,0
are vector-like with respect to the

massless gauge group SU(3)a × SU(2)b × U(1)Y × U(1)B−L of this model. The selection

rules for perturbative superpotential couplings of standard model particles are identical to

the previous examples, see equations (7.3) and (7.4), since all quarks, leptons and Higgses

arise from the same intersection pattern as displayed in equation (6.3) or by comparison

of tables 16 and 21.
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The beta function coefficients for this model are

[C] + [V ], [C] + [V ] minus massive

states in (7.14),

bSU(3)a
= 14, 12,

bSU(2)b
= 91, 80,

bU(1)Y
= 181

3 − 2x, 48 − 2x,

bU(1)B−L
= 280

3 , 72.

(7.15)

Again, in order to obtain realistic values, more non-chiral fields have to acquire a mass

which necessitates the exact computation of couplings or n-point functions and clearly

goes beyond the scope of this paper.

8. Conclusions

In this article, we have continued the statistical analysis of supersymmetric intersecting

D6-brane models on T 6/Z′
6 with the result that the seemingly large variety of spectra and

gauge couplings observed in [11] is subject to very strong correlations as displayed for the

number of chiral exotics versus Higgses in table 9. Most of the models without chiral

exotics contain nine generations of chiral up- and down-type Higgs multiplets plus three

vector-like leptons pairs stemming from non-vanishing 3-cycle intersection numbers in the

examples where a B − L symmetry distinguishes Higgses and sleptons. Considering the

hidden sectors, only gauge groups of at most rank three occur. All of these models have the

same weak mixing angle and ratio of strong and weak gauge couplings at the string scale.

We have thus seen that there exist correlations between certain properties of models

with the gauge and chiral matter content of the standard model and an unconstrained hid-

den sector. Whether this is true in a bigger context or an artefact of the specific geometric

set-up of these models is an interesting open question. The correlations between other

properties of theses models certainly also deserve further study and should be compared

with different constructions.18 Unfortunately, a statistical analysis of the complete non-

chiral matter spectrum has turned out to be too ambitious due to the numerous distinctions

of special cases discussed in section 3.2.

We found that in the examples discussed in detail in section 7 the one-loop beta

function coefficient for the strong coupling has the wrong sign, unless most of the non-

chiral states acquire masses at a high enough scale. To see if this can occur for states

other than those parallel on T 2
2 , it will be necessary to determine interaction terms for the

fractional branes under consideration.19 We hope to come back to this point in future work.

The analyses of the T 6/Z6 and T 6/Z′
6 intersecting D6-brane orbifold models suggest

that three standard model-like generations are naturally realised in the presence of a Z3

symmetry, which was not expected from the originally proposed configuration in [42], but

18For some results concerning correlations on T 6/(Z2×Z2) and T 6/Z6 see [5, 40, 30].
19For toroidal branes, some results have been reported in [41], and for toroidal instanton computations

see e.g. [12, 13]. Threshold corrections and Kähler metrics on T 6/(Z2×Z2) with rigid branes have been

considered in [37].
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occurs also in heterotic orbifold models, see e.g. [1] and references therein. It seems therefore

natural to expect phenomenologically interesting models also on, e.g., T 6/Z6 ×Z2 orbifold

backgrounds with torsion and rigid cycles [30].
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A. Chan-Paton labels

The representations of four dimensional massless open string states in a T 6/Z2N back-

ground depend on the Z2 ≡ θN orbifold and ΩRθ−k orientifold projections on the Chan-

Paton labels λ,

λ = aZ2

(

γZ2λγ
−1
Z2

)

,

λ = aΩRθ−k

(

γΩRθ−kλγ−1
ΩRθ−k

)T
,

λ = aΩRθ−k+N

(

γΩRθ−k+Nλγ−1
ΩRθ−k+N

)T
,

(A.1)

with the eigenvalues aZ2 , aΩRθ−k = ±1 of massless states and the consistency conditions

on the combined orbifold and orientifold action

aΩRθ−k+N = aZ2 · aΩRθ−k , γΩRθ−k+N = γΩRθ−k · γZ2 . (A.2)

The transformation properties of the intersection points determine which projection

conditions have to be imposed on the Chan-Paton matrices λ. (3.15) applies to intersection

points which are neither Z2 nor ΩRθ−k or ΩRθ−k+N invariant, which corresponds to the

notation (aZ2 , aΩRθ−k , aΩRθ−k+N ) = (∗, ∗, ∗). The remaining cases are listed in table 23.

B. Massless open string states

The general mass formula for states localised at brane intersections reads

α′

4
m2 =

1

2
p2 + ET − 1

2
with ET =

1

2

3
∑

i=1

φi(1 − φi) and φi ∈ [0, 1), (B.1)

where πφi is the angle between the branes on T 2
i up to a possible shift of π.

Setting φ0 ≡ 0, in the NS sector the states at the brane intersection take the form

p = |~n− ~φ〉 (B.2)

with ni ∈ Z, and the raising and lowering oscillators are ψµ
−1/2+m, ψ

i
−1/2+φi+m, ψ

ī
−1/2−φi+m,

with i = 1, 2, 3 and m ∈ Z. GSO invariant states comply with
∑

i ni = odd.
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Projections of Chan-Paton matrices

Z2 ΩRθ−k ΩRθ−k+N rep

+ + +

(

(N1
a,N

2
a) 0

0 ∗

)

+ − −
(

(N1
a,N

2
a) 0

0 ∗

)

− + −
(

0 Sym1
a

Sym2
a 0

)

− − +

(

0 Anti1a
Anti2a 0

)

+ ∗ ∗
(

(N1
a,N1

b) 0

0 (N2
a,N2

b)

)

− ∗ ∗
(

0 (N1
a,N2

b)

(N2
a,N1

b) 0

)

∗ + ∗
(

(N1
a,N

2
a) Sym1

a

Sym2
a ∗

)

∗ − ∗
(

(N1
a,N

2
a) Anti1a

Anti2a ∗

)

∗ ∗ +

(

(N1
a,N

2
a) Anti1a

Anti2a ∗

)

∗ ∗ −
(

(N1
a,N

2
a) Sym1

a

Sym2
a ∗

)

Table 23: Projections of Chan-Paton labels for various combinations of orbifold and orientifold

eigenvalues (aZ2 , aΩRθ−k , aΩRθ−k+N ). The entry ∗ for an eigenvalue denotes no projection condition.

A star in the lower right entry of the Chan-Paton label appears whenever this entry is by the

orientifold projection related to the upper left entry thereby not providing any new degrees of

freedom (d.o.f.).

The R sector states at brane intersections are given by

p = |~n+
~1

2
− ~φ〉 (B.3)

with corresponding oscillator states ψ0
m, ψ

i
φi+m, ψ

ī
−φi+m, where ψ0

0 flips the four dimensional

chirality of a given state. We use the convention that the GSO projection enforces
∑

i ni =

even.

The resulting massless and GSO projected open string states for supersymmetric con-

figurations of D6-branes at angles are given in table 24. Generically, the state a(θkb) at a

supersymmetric brane intersection with angles π(φ1, φ2, φ3) and
∑3

i=1 φi = 0 mod 2 pro-

vides one massless NS and R sector d.o.f. with a given Z2 parity. Its inverse sector (θkb)a
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Massless open string states

(φ1, φ2, φ3) NS R ãZ2

(0, 0, 0) | ± 1, 0, 0, 0〉NS = ψµ
−1/2

|0〉NS ±|1
2
, 1

2
, 1

2
, 1

2
〉R = |0〉R,

(

∏3

i=0
ψi

0

)

|0〉R +

|0,±1, 0, 0〉NS = ψ1,1
−1/2

|0〉NS ψ0
0ψ

1
0 |0〉R, ψ2

0ψ
3
0 |0〉R −

|0, 0,±1, 0〉NS = ψ2,2
−1/2

|0〉NS ψ0
0ψ

2
0 |0〉R, ψ1

0ψ
3
0 |0〉R +

|0, 0, 0,±1〉NS = ψ3,3
−1/2

|0〉NS ψ0
0ψ

3
0 |0〉R, ψ1

0ψ
2
0 |0〉R −

(φ,−φ, 0) |0,−φ, φ− 1, 0〉NS = ψ2
−1/2+φ|0〉NS | 1

2
, 1

2
− φ, φ − 1

2
,− 1

2
〉R = |0〉R +

|0, 1 − φ, φ, 0〉NS = ψ1
−1/2+φ|0〉NS | − 1

2
, 1

2
− φ, φ− 1

2
, 1

2
〉R = ψ0

0ψ
3
0 |0〉R −

(φ, 0,−φ) |0,−φ, 0, φ− 1〉NS = ψ3
−1/2+φ|0〉NS | 1

2
, 1

2
− φ,− 1

2
, φ− 1

2
〉R = |0〉R −

|0, 1 − φ, 0, φ〉NS = ψ1
−1/2+φ|0〉NS | − 1

2
, 1

2
− φ, 1

2
, φ− 1

2
〉R = ψ0

0ψ
2
0 |0〉R −

(0, φ,−φ) |0, 0,−φ, φ− 1〉NS = ψ3
−1/2+φ|0〉NS | 1

2
,− 1

2
, 1

2
− φ, φ− 1

2
〉R = |0〉R −

|0, 0, 1− φ, φ〉NS = ψ2
−1/2+φ|0〉NS | − 1

2
, 1

2
, 1

2
− φ, φ− 1

2
〉R = ψ0

0ψ
1
0 |0〉R +

(φ1, φ2,−φ1 − φ2)

for 0 < φ1 + φ2 < 1 |0,−φ1,−φ2, φ1 + φ2 − 1〉NS | − 1

2
, 1

2
− φ1,

1

2
− φ2, φ1 + φ2 − 1

2
〉R +

for 1 < φ1 + φ2 < 2 |0, 1 − φ1, 1 − φ2, φ1 + φ2 − 1〉NS |1
2
, 1

2
− φ1,

1

2
− φ2, φ1 + φ2 − 3

2
〉R +

Table 24: GSO projected massless NS and R states for supersymmetric configurations of D6-branes

at angles. The Z2 subgroup of T 6/Z2N is given by N~v = (1

2
, 0,− 1

2
). For shortness, ±|1

2
, 1

2
, 1

2
, 1

2
〉R

denotes the two states |1
2
, 1

2
, 1

2
, 1

2
〉R and | − 1

2
,− 1

2
,− 1

2
,− 1

2
〉R. The parameter range is chosen to be

0 < φ, φ1, φ2 < 1. In the absence of Wilson lines, the sign ãZ2 coincides with the one occurring in

the projection of the Chan-Paton labels, aZ2 .

at angles π(−φ1,−φ2,−φ3) furnishes the missing d.o.f. to form a full chiral multiplet. The

Z2 parity is read off from the fact that the unique (tachyonic) NS ground-states |0〉NS is Z2

even, while in the sector with one vanishing angle, e.g. π(φ,−φ, 0), the oscillator ψ2
−1/2+φ

is also Z2 even, but ψ1
−1/2+φ is Z2 odd.

C. Matter on SO(2N)/ Sp(2N) branes

In [11], we (partially, see footnote in section 7.1) classified branes which carry SO(2N) or

Sp(2N) gauge factors. Independently of deriving the correct gauge group assignment, it is

possible to compute the number of symmetric plus antisymmetric matter states as follows.

The γZ2 matrix is the same as in equation (3.13), but the ΩRθ−k projection and thereby

the identification of representations in the Chan-Paton labels for a ΩR invariant brane c

changes,

γΩRθ−k = 1I, λc(θkc) ≃
(

Antic1 + Symc1 (2Nc1 ,2Nc2)

(2Nc1,2Nc2) Antic2 + Symc2

)

, (C.1)

where as before we include both fractional branes c1 + c2 = c which are individually ΩR
invariant and have opposite Z2 eigenvalue and vanishing relative Wilson lines.

The matter states and their Z2 eigenvalues are read off from table 24 leading to one

multiplet in the adjoint representation plus two multiplets transforming as (2Nc1,2Nc2)
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in the cc sector. The c(θkc) sectors for k = 1, 2 have angles π(±1
3 ,∓1

3 , 0), and the cor-

responding representations depend on the invariance properties of the intersection points

and the (undetermined) ΩRθ−k eigenvalue of the massless state,

• zΩRθ−k+Z2
: ΩRθ−k and Z2 invariant points on T 2

1 × T 2
2 :

(2Nc1,2Nc2) +

{

ΩRθ−k : + Symc1 + Symc2

ΩRθ−k : − Antic1 + Antic2
, (C.2)

• zΩRθ−k(+N) : ΩRθ−k(+N) but not Z2 invariant orbits on T 2
1 × T 2

2 :

2 × (2Nc1,2Nc2) + 2 ×
{

ΩRθ−k(+N) : + Symc1 + Symc2

ΩRθ−k(+N) : − Antic1 + Antic2
, (C.3)

• zZ2 : Z2 but not ΩRθ−k invariant orbits:

2 × (2Nc1,2Nc2) + Symc1 + Symc2 + Antic1 + Antic2 , (C.4)

• z0: orbits of points without invariance properties:

4 × (2Nc1 ,2Nc2) + 2 ×
[

Symc1 + Symc2 + Antic1 + Antic2
]

. (C.5)

Independently of the correct ΩRθ−k assignments, the matter spectrum contains (i = 1, 2)

#
(

Symci

)

+ # (Antici) = 1 + |Ici(θci)|,
#(2Nc1 ,2Nc2) = 2 + |Ic1(θc2)|.

(C.6)

All other bifundamental representations are counted in the usual way (up to the caveat

that a(θkc′) sectors are identified with a(θkc) sectors).

D. Bulk relations among different lattices

The bulk wrapping numbers ã1 . . . ã4 (labelled P . . . V in [11]) in table 1 can be expressed

in terms of one-cycle wrapping numbers (ni,mi)i=1...3 on T 2
i as follows

ã1 ≡ P = An3, ã2 ≡ Q = B n3, ã3 ≡ U = Am3, ã4 ≡ V = Bm3, (D.1)

with the abbreviations

A ≡ n1 n2 −m1m2, B ≡ n1m2 +m1 n2 +m1m2. (D.2)

A rotation of π(1/3, 0,−1/2) for b = 0 acts on the one-cycle wrapping numbers as







n1 m1

n2 m2

n3 m3






→







−m1 n1 +m1

n2 m2

m3 −n3






,

(

A

B

)

→
(

−B
A+B

)

. (D.3)
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The bulk wrapping numbers are thus transformed,

(ã1, ã2, ã3, ã4) → (−ã4, ã3 + ã4, ã2,−ã1 − ã2) ≡ (â1, â2, â3, â4). (D.4)

This transformation translates the bulk RR tadpole cancellation condition (2.4) of the

AAa geometry to the BAa lattice and the ABa to the BBa constraint.

If the complex structure parameter ̺ on the original torus is replaced by ˆ̺ = 3
4̺ , also

the bulk supersymmetry conditions (2.5) are reinterpreted in terms of the transformed

geometry.

The b type orientations are included by replacing (n3,m3) → (n3,m3 + b n3) in (D.3)

and (D.4).

In [11], a double counting of solutions was avoided as follows.

(i) (n1,m1) = (odd, odd) selects one of the orbifold image cycles (θka),

(ii) (n3,m3 +b n3) > (0, 0) avoids counting the orbit (θka) and its orientifold image (θla′)
as two independent configurations,

(iii) n1 > 0 forbids a simultaneous flip of the remaining orientations of one-cycles along

T 2
1 × T 2

2 .

A careful analysis of the solutions related by a π(1/3, 0,−1/2) rotation reveals that con-

ditions (i) and (ii) are still met if the (θâ′) image of a is chosen, which has wrapping

numbers

BAa : (n̂i, m̂i)(θâ′) =







m1 n1

n2 −(n2 +m2)

m3 n3






, BBa :







m1 n1

n2 +m2 −m2

m3 n3






. (D.5)

Condition (iii) is replaced by m̂1 > 0. The coprime condition on T 2
1 and T 2

3 is clearly

preserved under the transformation, and on T 2
2 , it follows from the fact that a Z′

6 rotation

θ which acts by (n2,m2)
θ→ (−n2 − m2, n2)

θ→ (m2,−n2 − m2) also conserves relative

primes.

This proves that the number of supersymmetric solutions to the bulk RR tadpole

cancellation conditions on AA and BA geometries along T 2
1 ×T 2

2 is identical, similarly for

AB and BB.

Due to condition (i), the torus cycle is either passing through the Z2 fixed points {1, 6}
or {4, 5} on T 2

1 in the notation of [11] from which one derives the coefficients dj , ej of the

exceptional cycles in (2.3). For some fixed j1 which the torus cycle on T 2
3 passes through,

one obtains

(dj1 , ej1){1,6} =
(

(−1)τ
0+τ1+1 (n2 +m2), (−1)τ

0+τ1
n2

)

,

(dj1 , ej1){4,5} =
(

(−1)τ
0
(

n2 + (−1)τ
1
m2

)

, (−1)τ
0
(

(−1)τ
1+1n2 + (1 − (−1)τ

1
)m2

))

,

(D.6)

where (j1, j2) ∈ {(1, 2), (4, 3)} or {(1, 3), (2, 4)} or {(1, 4), (2, 3)} are the pairs of fixed points

traversed by the cycle for (n3,m3) = (odd,even), (odd,odd) and (even, odd), respectively,
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according to the fixed point labels in [11]. The first and second set of points corresponds to

no or some displacement of the cycle from the origin on T 2
3 , respectively. The coefficients

(dj2 , ej2) carry and additional global factor (−1)τ
3

where τ i ∈ {0, 1} parameterise the

overall Z2 eigenvalue (i = 0) and Wilson lines on T 2
1 × T 2

3 (i = 1, 3).

Upon the π(1/3, 0,−1/2) rotation, the wrapping numbers on T 2
3 transform as

(n3,m3) → (m3, n3) and Z2 fixed points on the a geometry for T 2
3 are permuted as follows,

(1, 2, 3, 4) → (1, 4, 3, 2). (D.7)

Inserting the transformed wrapping numbers (n̂2, m̂2)(θâ′) on T 2
2 given in (D.5) leads to

BAa :

(d̂ĵ1
, êĵ1){1,6}=

(

(−1)τ
0+τ1

m2, (−1)τ
0+τ1

n2

)

,

(d̂ĵ1
, êĵ1){4,5}=

(

(−1)τ
0
(

(1−(−1)τ
1
)n2+(−1)τ

1+1m2

)

, (−1)τ
0+1
(

n2+(1+(−1)τ
1+1)m2

))

,

BBa :

(d̂ĵ1
, êĵ1){1,6}=

(

(−1)τ
0+τ1+1 n2, (−1)τ

0+τ1
(n2 +m2)

)

,

(d̂ĵ1
, êĵ1){4,5}=

(

(−1)τ
0
(

n2 + (1 + (−1)τ
1+1)m2

)

, (−1)τ
0+1

(

(−1)τ
1
n2 +m2

))

,

(D.8)

in terms of the original numbers (n2,m2) on AAa and ABa, respectively, and the analogous

expressions with an overall prefactor of (−1)τ
3

for (d̂ĵ2
, êĵ2).

The RR tadpole cancellation (2.4) and massless hyper charge (5.2) conditions due to

exceptional cycles are conveniently parameterised for the a geometry on T 2
3 by (X3 . . . X6)

and (Y3 . . . Y6) with

X2+j =



















2 ej AAa

ej − dj ABa

dj + ej BAa

dj + 2 ej BBa

, Y2+j =



















2 dj + ej
dj + ej
dj − ej

2 ej

for j = 1 . . . 4. (D.9)

In case of a b torus, X3 and X6 remain unchanged while the remaining two entries are

subject to a shift
(

X4

X5

)

→
(

X4 + 2b(e3 − e2)

X5 − 2b(e3 − e2)

)

, (D.10)

and a similar expression for (Y4, Y5). This explicit form can be used to test the behaviour of

the RR tadpole cancellation conditions from exceptional cycles under the π(1/3, 0,−1/2)

rotation. The correspondence of the bulk relations does, however, not carry over immedi-

ately. This is not too surprising since,e.g., the number of full solutions on BBa is by one

order of magnitude bigger than on ABa [11].

– 45 –



J
H
E
P
0
7
(
2
0
0
8
)
0
5
2

Trinification models with U(3)a × U(3)b × U(3)c

̺ chiral states on a, b, c only #models

1
3

2 ×
[

(3a,3b,1) + (1,3b,3c) + (3a,1,3c)
]

+6 (3Aa
,1,1) + 3 (6Sa

,1,1)

+4 (3a,3b,1) + 2 (3a,1,3c) + 2 (1,3b,3c)

2864

1

2 ×
[

(3a,3b,1) + (1,3b,3c) + (3a,1,3c)
]

+(3Aa
,1,1) + 4 (6Sa

,1,1)

+4 (3a,3b,1) + 2 (3a,1,3c) + 2 (1,3b,3c)

6.3 × 108

Table 25: Complex structure values ̺ on T 2
3 , frequency and chiral matter charged under U(3)a ×

U(3)b ×U(3)c for trinification models. Further chiral states can arise from intersections with other

branes needed for RR tadpole cancellation.

E. Trinification models

Intersecting D-branes offer the possibility for trinification models with gauge group U(3)a×
U(3)b × U(3)c and n quark-lepton generations in

n×
[

(3a,3b,1) + (1,3b,3c) + (3a,1,3c)
]

. (E.1)

It turns out that on T 6/Z′
6, there are only supersymmetric solutions for n = 2, and all

of them contain a large number of chiral exotics. The chiral matter states involving only

stacks a, b and c and the associated complex structure value are displayed in table 25.

More chiral exotic states can arise at intersections with further brane stacks required for

RR tadpole cancellation.

Due to the large number of chiral exotics these models are not very interesting from a

phenomenological point of view and we do not pursue a more detailed analysis.
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